Creative Planning with Language Models

Practice, Evaluation and Applications

Alexander Spangher, Tenghao Huang, Philippe Laban, Nanyun Peng

Introduction		
Definitions	Motivation	Framework

Who are we?

Alexander Spangher Tenghao Huang USC USC

Philippe Laban Microsoft Research Nanyun (Violet) Peng UCLA

Introduction		
Definitions	Motivation	Framework

Example: Journalism

<u>*Task*</u>: Choose a story idea to write about.

How complex is this process?

Need to verify each story

Assess impact, stakeholders succinct, appealing way

Find sources

What does success mean?

Which story will have the most impact? What is a good story?

Which story will the readers care the most about?

How can we verify a story is true?

Introduction		
Definitions	Motivation	Framework

Example: Music

Task: Create lyrics to accompany the melody

How complex is this process?

Determine meter and rhyming structure

Have topical consistency

Implement melodic constraints

What does success mean?

Metaphor? Analogy?

Storytelling?

What words will be the most beautiful?

How will the words match the music?

How soft are the constraints?

What message will match the musical tone?

Introduction		
Definitions	Motivation	Framework

What is Creative Planning?

What is planning?

Any kind of reasoning about a set of actions to take What is a creative context?

Good? Bad?

Any task where "success" is not formally defined What tasks require planning in creative contexts?

Most human tasks!

Introduction		
Definitions	Motivation	Framework

Why does this matter?

Integrate AI in a wider scope of

Learn more about humans

Accelerate creative ideation

Positively impact society

	Introduction	
Definitions	Motivation	Framework

Example: Journalism

i.e. the professionalised process of gathering, verifying, disseminating information relevant to a community. (Kovach, 2014)

Journalism promotes healthy societies

(Hutchins, 1947; Brunetto, 2003; Hamilton, 2016)

Decrease political polarization (Darr, 2018). Enhance civic engagement (Hayes, 2015). increase voting rates (Rubado, 2020). Combat misinformation (Greene, 2024; Zilic, 2023).

The journalism industry is in crisis

Revenues \downarrow 80% since 2002 (Scherer, 2023). Half of US counties are news deserts (Abernathy, 2018). 75% of news written in under 6 hours (Reich, 2017)

<u>News outlets need help to survive.</u>

U.S. Counties with 1 or 0 newspapers (2016)

Hutchins Commission. A Free and Responsible Press. (1947). Darr, J. et al. "Newspaper closures polarize voting behavior." Journal of Communication 66.6 (2018). Hayes, D. et al. "As local news goes, so goes citizen engagement: Media, knowledge, and participation in US House Elections." The Journal of Politics 77.2 (2015). Rubado, M., et al. "Political consequences of the endangered local watchdog: Newspaper decline and mayoral elections in the United States." Urban Affairs Review 56.5 (2020). Greene, K. et al. "An evaluation of online information acquisition in US news deserts." Scientific Reports 14.1 (2024). Zilico Fiser, S. et al. "Strategies for the minimisation of misinformation spread through the local media environment." *Journalism Practice* 17.10 (2023). Kovach, B., et al. The Elements of Journalism: What Newspeople Should Know and the Public Should Expect. Crown. (2014). Brunetti, Aymo, and Beatrice Weder." A free press is bad news for corruption." Journal of Public economics 97.7-8. (2003) Hamilton, James T. Democracy's detectives: The economics of investigative journalism. Harvard University Press. (2016). Abemathy, Penelope Muse, The expanding news desert. University of North Carolina at Conspension Cuncertainty: Neutoted..., D. et al. Stop the Presses? Newspapers in the Digital Age. Congressional Research Service (2023).

Introduction		
Definitions	Motivation	Framework

Introduction		
Definitions	Motivation	Framework

Introduction		
Definitions	Motivation	Framework

How end-states and/or

trajectories are assessed

Problem-Finding How end-states are defined Path-Finding How plans are made and steps/actions are taken

Introduction		
Definitions	Motivation	Framework

a_1 a_2 a_3 a_3 a_1 a_2 a_3 a_3

Demos: 11:45-12:30

11:45-12:00: Kristina Gligoric 12:00-12:15: Debarati Das 12:15-12:30: Yucheng Jiang

9:15 - 9:45 Part 1

Problem-Finding How end-states are defined 9:45 - 10:45 Part 2

Path-Finding How plans are made and steps/actions are taken 11:15 - 11:45 <u>Part 3</u>

Evaluation How end-states and/or trajectories are assessed

Outline

Problem-Finding: How goals and rewards are defined in creative settings.

Sternberg (1991) Investment theory. Runco (1994), Getzels (2017) Problem Finding.

<u>Path-Finding</u>: How the search space for creative tasks is navigated.

Finke, Ward, Smith (1992) *Geneplore Model*. Boden (1990s) *Computational Creativity and Constraints*.

Execution/Evaluation: How are creative outputs evaluated.

Hopper (2008) *Emulation and Ghost Conditions*. Langer (1942) *Norms and cumulative cultures*

Introduction		
Definitions	Motivation	Framework

Introduction		
Definitions	Motivation	Framework

Low Data

We can only observe the end-state

Introduction			
Definitions	Motivation	Framework	

Low Data

We can only observe the end-state

Medium Data

We assume limited data into state observations

Introduction			
Definitions	Motivation	Framework	

Low Data

We can only observe the end-state

Medium Data

We assume limited data into state observations

High Data

We assume complete observability into states, actions and more

Introduction			
Definitions	Motivation	Framework	

How does creative planning differ from existing fields?

Problem Finding

Problem Finding: Overview and Background

"The formulation of a problem is often more essential than its solution, which may be merely a matter of mathematical or experimental skill."

Einstein and Infeld (1938), The Evolution of Physics

Getzels and Csikszentmihalyi (1976) studied art students painting:

- How many objects did artist consider in their drawing?
- How late did the basic pattern of their drawing become clear?
- Did their post-interview comments indicate a searching attitude?
- ..

Artists that spent more effort **defining the problem** produced art judged to have more merit and had more professional success in life.

Problem Finding: Overview and Background

"The formulation of a problem is often more essential than its solution, which may be merely a matter of mathematical or experimental skill."

Einstein and Infeld (1938), The Evolution of Physics

What is our goal state? What is our reward function?

Problem Finding: Overview and Background

- Emulation
- Learning from Synthetic Data
- Reward Learning

Problem-Finding Path Finding Evaluation				
Emulation	Learning from Synthetic Data	Reward Learning		

Emulation

Problem-Finding Path Finding Evaluation			
Emulation	Learning from Synthetic Data	Reward Learning	

Journalism

Task: Choose the best story idea to investigate.

Problem-Finding Path Finding Evaluation			
Emulation	Learning from Synthetic Data	Reward Learning	

What stories got covered?

SF Board of Supervisors Policy

Release of Reserved Funds - Public Works - Trash Can Design and Deployment - \$427,500.

Hearing on City of SF's policies as it relates to public trash cans and its policies for trash pickups

Approving Submission of Sales Tax to Support Caltrain Service – November 3, 2020

Half-Cent Sales Tax Increase for Transportation. – November 8, 2016

SF Chronicle Article

...the BOS wrestled with replacing substandard bins when it learned that a batch of new, custom-made design prototypes will cost \$12,000 to \$20,000 apiece.

BART expects rail system to lose \$975 million -- a scar of COVID-19 and changing commuting patterns. "We need help," General Manager Bob Powers said.

Spangher, et al. "Tracking the Newsworthiness of Public Documents." Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024.

Problem-Finding Path Finding Evaluation				
Emulation	Learning from Synthetic Data	Reward Learning		

What stories got covered?

In the examples: public interest, surprising details, world-context.

Authors' definition:

What would journalists consider to be newsworthy?

Authors' approach:

Gather enough data on what HAS been covered and what HAS NOT, and approximately predict newsworthiness of NEW information.

Problem-Finding Path Finding Evaluation				
Emulation	Learning from Synthetic Data	Reward Learning		

What stories got covered?

$$\underbrace{P(l|a,p)}_{\text{link article policy}} \sum_{h_1} \sum_{h_2} \dots p(l|a,p,h_1,h_2\dots) \dots p(h_1|a,p)$$

Probabilistic Relational Model

Problem-Finding Path Finding Evaluation				
Emulation	Learning from Synthetic E		Reward Learning	
Probabilistic Relational Mo	<u>del</u>	h1= "art h2= "art h3= "a c	icle covers icle covers covers rece	s SFBOS" s votes/policy" ent policy from SFBOS"
$\begin{array}{c} P(l a,p) = \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\sum_{h_1}\sum_{h_2}p(l a,p,h_1)$ t	$1,h_2$.)p(h)er attribute	$a_1 a,p)$ es of one or both items
PRM-Chain	TI	F-IDF	SBERT	OpenAI Embeddings
p(l a,p), base		16.0	32.1	30.3
$\sum_{h_1} p(l a,p,h_1) p(h_1 a,p)$		28.5	33.9	37.5
$\sum_{h_1,h_2} p(l a,p,h_1,h_2) p(h_2 h_1,h_2)$	(a, p)	55.3	48.2	53.5
$\sum_{h_1,h_2,h_3} p(l a,p,h_1,h_2,h_3) p(l a,p,h_1,h_2,h_3)$	$h_3 h_1, h_2, a, p)$	68.2	55.6	62.6

Problem-Finding Path Finding Evaluation			
Emulation	Learning from Synthetic Data	Reward Learning	

rtomara Ebarning

Training Predictive Models

Now, given a large dataset of what HAS/HAS NOT been covered...

Authors build a training dataset:

- 13,000 SFBOS policy proposals

 1,595 covered proposals (y=1)
 11,405 proposals (y=0)
- 50,000 SFBOS meetings
 - 3,200 hours of transcribed video
 - 15,000 diarized speakers

(Low/Medium data regimes)

LLM Prompt:

- (1) Policy description: "Trash Can
 Design and Deployment \$427,500".
- (3) 1 member of the public spoke for 10 minutes and said "I'm bothered by the trash on our block..."

Problem-Finding Path Finding Evaluation			
Emulation	Learning from S	ynthetic D	ata Reward Learning
Results			(Low/Medium data regimes) a_1 a_2 a_3 s_1 s_2 s_3 s_4
Fine-tuned GPT3	R@10		
full	64.1		M Prompt:
(1), (2) (1)	63.1 52.2	(1)	Policy description: "Trash Can Design and Deployment - \$427,500".
(2), (3) GPT4, full GPT3.5, full	37.2 40.6 46.7	(2)	Introduced by 4 speakers in meeting for .4 minutes. Text: "Without objection, this ordinance"
This model has an 84% baseline, evaluated by p	win-rate against professional	(3)	1 member of the public spoke for 10 minutes and said "I'm bothered by the trash on our block "

journalists.

block…"

Problem-Finding Path Finding Evaluation			
Emulation	Learning from Synthetic Data	Reward Learning	

Are we just learning "trending" topics?

Train	R@10	n (y=1)
'13-'21	64.1	1,595
'13-'20	52.8	1,289
'13-'19	53.9	1,084
'13-'18	55.0	867
'13-'17	52.2	693

<u>**Takeaway</u>**: "news" isn't really "new", we can make stable predictions about what would be covered.</u>
Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

Emulation in Journalism

	Problem-Finding Path Finding Evaluation	
Emulation	Learning from Synthetic Data	Reward Learning
<section-header><section-header></section-header></section-header>	a ₁ a ₂ a ₂ a ₃ a ₃ S ₂ S ₃ Cognitive Science: "End-state observation, to play a crucial role in cumulative cultures." Symbolic Philosophy: "Symbolic interpreta and human behavior". (Langer, 1942)	$\int_{C} \frac{1}{2} \int_{C} \frac{1}{2} $
•	Antificial interingence. Overlaps with means	38 38 38 (Newell, 1901)

38

backtracking (Golomb, 1965) and regression planning (McDermott, 1991; Xu, 2019)

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

Emulation in Science

OpenAI. "PaperBench: Evaluating AI's Ability to Replicate AI Research." (2025).

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

LLM

Convert Scientific Article to "Rubric"

Robust CLIP: Unsupervised Adversarial Fine-Tuning of Vision Embeddings for Robust Large Vision-Language Models

Christian Schlarmann*12 Naman Deep Singh*12 Francesco Croce 3 Matthias Hein12

Abstract

:Xiv:2402.12336v2 [cs.LG] 5 Jun 2024

1. Introduction

Several recent foundation models are trained to semanically align inputs from different modalities in a joint embedding space. The most relevant example is CLIP (Radfor et al., 2021), which learns, via contrastive training, to encode text and images into a feature space where inputs, in either form, capatring similar concepts are mapped to be close to each other. These models show great promise for many down-steam tasks, in putricular thanks to their

¹Equal contribution ¹Tübingen AI Center, Germany ²University of Tübingen, Germany ³EPFL, Switzerland, Correspondence to: <christian.schlarmann@uni-tuebingen.de>.

Proceedings of the 41st International Conference on Machine Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by the author(s).

Figure 1: (Robust) performance of LLaVA-15 on visionlanguage tasks and zero-bot (robust) classification for different CLIP models as vision encoder: (i) the original CLIP. (ii) TeCA²: robust CLIP with uppervised adversarial fine-tuning (Mao et al., 2023) at \mathcal{L}_{∞} , radius of $^{2}/s_{\infty}$, and (iii) FARE?: robust CLIP using our proposed unsupervised adversarial fine-tuning at \mathcal{L}_{∞} , radius of $^{2}/s_{\infty}$. The original CLIP is completely non-robust. Our FARE? model has *better* (*closs*) and *robust* performance than TeCAv³ on almost all down-stream tasks, see Fig. 2 for qualitative outputs.

very good performance in zero-shot settings: for example, they can encode virtually any class with its textual description, which makes them well-auited for zero-shot image classification. Additionally, CLIP-like models are an essential component of recent large vision language models (UVLMs): in fact, OpenHarmingo (Awadalla et al., 2023) and LLAVA (Lia et al., 2023ba) are built connecting the frozon vision encoder of the original CLIP with a large lanforcent vision encoder of the original CLIP with a large lantron of the encoder of the original CLIP with a large lantron-of penetrization capabilities, e.g. in image captioning, visual question answering (VQA) and classification from text prompts.

Given the flexibility and effectiveness of such large foundation models, in particular LVLMs, it is foreseeable that they (Low/Medium data regimes)

The centroid for the k embeddings is computed using euclidean distance

All evaluations on the SVAMP benchmark use SciBERT as the feat...

For Experiment IV, the PPO reward is higher than SAC on the dense MuJ...

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

Goal: Use action inferences for replicability

.git	Submission
scripts	fix hparam
src src	model training works
🗋 .gitignore	Initial commit
reproduce.sh	section 1.1 reproduced
README.md	tidy

Replicate the paper's main contributions.

Reproduction

> bash reproduce.sh &> reproduce.log Installing dependencies... Running experiment 1.1... Results saved to table1.csv

model_ckpts

reproduce.log

table1.csv

🗋 figure2.png

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

Prompting technique #1 (basic)

MODEL	PAPERBENCH
O3-MINI-HIGH	2.6 ± 0.2
GPT-40	4.1 ± 0.1
gemini-2.0-flash	3.2 ± 0.2
DEEPSEEK-R1	6.0 ± 0.3
01-нідн	13.2 ± 0.3
CLAUDE-3.5-SONNET	21.0 ± 0.8

Prompting technique #2 (iterative)

MODEL	PAPERBENCH
03-mini-high	8.5 ± 0.8
CLAUDE-3.5-SONNET	16.1 ± 0.1
о1-нібн	24.4 ± 0.7
With an extended 3	6 hour limit
O1-HIGH	26.0 ± 0.3

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

Recap

Emulation (Hopper, 2008)

- Can we infer states and actions from end-state observation?
- Can we use these inferences to infer rewards, motivations?

Contrast: Imitation

• Can we mimic the exact actions?

(Low/Medium data regimes)

(High data regimes)

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

Learning from Synthetic Data

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

Continuing the journalism example

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

Are sources used in predictable ways?

Associative Predictability

They wish to test: $p(s_i|s_{<i}) > p(s_i)$

More formally:

- Original article S
- Source v

y=0 if $S'=Sackslash \{\emptyset\}$ y=1 if $S'=Sackslash \{v\}$

 $S' = egin{cases} S \setminus \{ \emptyset \} & ext{(with probability } p = 0.5) \ S \setminus \{ v \} & ext{(with probability } p = 0.5) \end{cases}$

<u>Goal:</u>

Train classifier: Source Predictability

Has predictability (H₁)

Source Predictability $\propto {
m F1}(f)$ No predictability (H $_{
m 0}$) ${
m F1}(f)=0.5$

 $f(S')
ightarrow \{0,1\}$

F1(f) > 0.5

49

Trial	<u>F1</u> (Best Model)	<u>Stat. Sig.</u>
Primary Source Ablated	78.3	p<.001
Secondary Sourced Ablated	67.1	p<.001
Any Source Ablated	59.4	p<.01

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

Other examples of this approach: Creative Writing

Ahuja, Kabir, Melanie Sclar, and Yulia Tsvetkov. "Finding Flawed Fictions: Evaluating Complex Reasoning in Language Models via Plot Hole Detection.

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

Extensions of this approach: Creative Writing

Model	Accuracy	CEEval-Full
Random Baseline Always No Error Baseline	0.50	0.00 0.50
Entailment Baseline	0.53	0.04
Llama-3.3-70B	0.57	0.38
Llama-3.1-8B	0.50	0.10
DeepSeek-R1-Qwen-32B [‡]	0.56	0.35
Qwen2.5-32B	0.53	0.31
GPT-4o (with CoT)	0.64	0.58
GPT-40-mini (with CoT)	0.53	0.32
GPT-4-turbo (with CoT)	0.57	0.55
o1 [‡] (Low)	0.71	0.65
(Medium)	0.70	0.65
(High)	0.69	0.64
o3-mini [‡] (Low)	0.55	0.52
(Medium)	0.62	0.53
(High)	0.63	0.47
Claude 3.5 Haiku (with CoT)	0.57	0.46
Claude 3.5 Sonnet	0.76	0.67
(with Verifier)	0.74	0.68
Claude 3.7 Sonnet	0.66	0.55
(with Extended Thinking) [‡]	0.73	0.66
Human Performance	0.76	0.68

(a) Performance comparison of different models on the FLAWEDFICTIONS.

F. Evaluate on rebuilt story

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

How does synthetic data help us learn trajectories? *Recall:* Emulation

Ablation

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

LLM as a Journalistic Interviewer (Lu, 2024)

NEWS

Human

00

00 — E

Agent

Observation: LLMs are bad at grounding conversations. (Shaikh, 2024)

Question-Types Throughout Human Interviews

9 10

8 Ouestion #

11 12 13 14 15 16

9 10 11 12 13 14 15 16

Verification

Challenge

Lu, Michael, et al. "NewsInterview: a Dataset and a Playground to Evaluate LLMs' Ground Gap via Informational Interviews." 2024. Shaikh, Omar, et al. "Grounding Gaps in Language Model Generations." NAACL. 2024.

0.0

Ż Ś 4 5 6

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

LLM as a Journalistic Interviewer (Lu, 2024)

Observation: LLMs are bad at grounding conversations. (Shaikh, 2024)

And then my boss asked me to stay in the office late...

I see... what a nightmare. How did you see it at the time?

Workplace harassment is a crime that is reported over.... There were several reporting channels you could use, did you...

But it's unclear how to train better agents.

What reward signal can we train on?

Lu, Michael, et al. "NewsInterview: a Dataset and a Playground to Evaluate LLMs' Ground Gap via Informational Interviews." 2024. Shaikh, Omar, et al. "Grounding Gaps in Language Model Generations." NAACL. 2024.

Demo

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

Further Reading on Synthetic Data

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

Reward Learning

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

Before, we assume limited data...

Example: OpenAl's PaperBench

...what if we had more observability?

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

A more typical scenario in NLP

Autoregressive natural language generation:

...what if we had more observability?

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

What can we learn about this system?

Behavioral Cloning: Directly learn policy function

$$\pi^{ ext{pre}}_{ heta} = rg\max_{ heta} \sum_{(s_t, a_t) \in \mathcal{D}_E} \log \pi_{ heta}(a_t \mid s_t)$$

Train Reward Model:
$$\mathcal{L}_{ ext{RM}} = -\log\sigma\left(r_{\phi}(s_T) - r_{\phi}(\hat{s}_T)
ight)$$

Optimize Policy (e.g. PPO, REINFORCE, etc.)

$$\max_{ heta} \mathbb{E}_{ au \sim \pi_{ heta}} \left[\sum_{t=1}^T r_{\phi}(s_T)
ight]$$

Typically need 10-100k preference pairs (even for approaches that don't train reward model directly, DPO)

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

Can we learn the reward function?

Inverse Reinforcement Learning

Fu, Yu, Deyi Xiong, and Yue Dong. "Inverse Reinforcement Learning for Text Summarization." The 2023 Conference on Empirical Methods in Natural Language Processing.

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

What if we had EVEN MORE data?

Reinforcement Learning from Human Feedback

Alternative final document

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

Key problem: Human rewards are complex. Can we mixing multiple policies?

How can we generate a diverse set of data? # Types of dataset = $N \gg M$

M = # objectives

Shi, Ruizhe, et al. "Decoding-time language model alignment with multiple objectives." Advances in Neural Information Processing Systems 37 (2024): 48875-48920

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

Solution: Decoding-time multi-objective alignment (MOD)

preference weight w over objectives.

 $\boldsymbol{w} = [w_1, w_2, w_3, \dots, w_k],$ $r(\boldsymbol{w}) = \sum_i w_i r_i$ $\pi_{\boldsymbol{w}}^* \text{ is optimizing over } r(\boldsymbol{w})$

Data generated from $\pi^*(w)$ is a new type

Think each (w, π_w) as one type of data source. There exists a huge set of w.

Theory Behind: Reverse RL

Reward to policy

$$\pi_{i}(y|x) = \pi_{ref}(y|x) (\nabla f)^{-1} \left(-Z_{i}(x) + \frac{1}{\beta}r_{i}(y|x) \right)$$

$$Policy to$$

$$r_{i}(y|x) = \beta \nabla f \left(\frac{\pi_{i}(y|x)}{\pi_{ref}(y|x)} \right) + \beta Z_{i}(x)$$

For multi-objective reward parameterized by preference $\sum_{i=1}^{m} w_i r_i$:

$$\pi_{\boldsymbol{w}}^{*}(\boldsymbol{y}|\boldsymbol{x}) = \pi_{\mathrm{ref}}(\boldsymbol{y}|\boldsymbol{x}) \ (\nabla f)^{-1} \left(-Z_{i}(\boldsymbol{x}) + \sum_{i=1}^{M} \boldsymbol{w}_{i} \ \nabla f\left(\frac{\pi_{i}(\boldsymbol{y}|\boldsymbol{x})}{\pi_{\mathrm{ref}}(\boldsymbol{y}|\boldsymbol{x})}\right) \right)$$

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

Tuning weight can lead to more creative and diverse data.

Create helpful but harmful (neg weight on harmless) data. (Rare data in reality)

Problem-Finding Path Finding Evaluation		
Emulation	Learning from Synthetic Data	Reward Learning

Further Reading on Reward Learning

Path Finding

How the search space for creative tasks is navigated.
Challenges of creative planning

- The search space is unknown or **large**
- The reward is **sparse**

	Writing	Information Gathering (e.g. DeepResearch)	Brainstorming (Al4Science)
Search Space			
Reward Space			

Challenges of creative planning

- The search space is unknown or **large**
- The reward is **sparse**

	Writing	Information Gathering (e.g. DeepResearch)	Brainstorming (Al4Science)
Search Space	~ infinite	internet	internet + database
Reward Space	Undefined	Sparse	Open Review .net

Conventional Planning

Path-finding: Overview and Background

"Creativity involves breaking out of established patterns to look at things in a different way."

Path-Finding – Overview and Background

- Search
- Hierarchical Planning
- Constraint-following

Problem-Finding Path Finding Evaluation			
Search	Hierarchical Planning	Constraint-following	
Search			

• Heuristics-driven search steers generations by heuristic function.

Problem-Finding Path Finding Evaluation				
Search	Search Hierarchical Planning Constraint-follow			

Examples of Heuristics in Creative Tasks

Human stories have more "high-rank" words than machine generated stories.

Human-Written

The programme operates on a weekly elimination process to find the best all-around baker from the contestants, who are all amateurs.

Generated

The first book I went through was The Cook's Book of New York City by Ed Mirvish. I've always loved Ed Mirvish's recipes and he's one of my favorite chefs.

(Sebastian, et. al. 2019) (Huang, et. al. 2023)

Problem-Finding Path Finding Evaluation			
Search	Hierarchical Planning Constraint-following		

Constrained Beam Search

Originally

Constrained Beam Search

	Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning Constraint-follow		

Constrained Beam Search

• OOD image captioning

Anderson, et. al. 2017

Machine translation

Input: Rights protection should begin before their departure .

Hokamp, et. al. 2017

Problem-Finding Path Finding Evaluation		
Search	Search Hierarchical Planning Constraint-following	

Constrained Beam Search for Creative Tasks

- Trained a multi-arm bandit to decide beam size
- Rerank candidates by heuristics values at inference time

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

Heuristics-driven Search

Problem-Finding Path Finding Evaluation		
Search	h Hierarchical Planning Constraint-following	

Heuristics-driven Search

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

Heuristics-driven Search

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

RQ1: Is the transition function always available?

 $S_{t+1} = f(S_t, a_t).$

• Depends on the data regime

	Low	Mid	High
Start State	×	\checkmark	\checkmark
Intermediate States	×	×	\checkmark
End	\checkmark	\checkmark	\checkmark
Transition Function?	no	no	yes

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

RQ1: Is the transition function always available?

 $S_{t+1} = f(S_t, a_t).$

- Depends on the data regime
- What to do if there is no transition function?
- Incorporate human knowledge and workflows

 $f_{\phi}: (\phi(S_t), a_t) \rightarrow \phi(S_{t+1})$, where ϕ is latent space encoding function.

Will cover it later!

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

RQ1: Is the step-by-step reward always available?

$$R = \frac{r(S_{t+1})}{\text{extrinsic}} + \beta \cdot \frac{h(f(S_t, a_t))}{\text{intrinsic}}$$

• Depends on the data regime

	Low	Mid	High
Start State	×	\checkmark	\checkmark
Intermediate State	×	×	\checkmark
End	\checkmark	\checkmark	\checkmark
Step-by-step Reward?	no	no	maybe

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

RQ1: Is the step-by-step reward always available?

$$\mathbf{R} = r \frac{(S_{t+1})}{\text{extrinsic}} + \boldsymbol{\beta} \cdot \frac{h(f(S_t, a_t))}{\text{intrinsic}}$$

- Depends on the data regime
- What if there is no step-by-step reward?

Learn a reward model!

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

RQ2: Can rule-based heuristics lead to true creativity?

$$R = r(S_{t+1}) + \beta \cdot \frac{h(f(S_t, a_t))}{\text{extrinsic}}$$

- Exploitation vs. Exploration
- The extrinsic reward motivates <u>exploitation</u>
- The intrinsic reward motivates **exploration**

Lilian Weng. Exploration Strategies in Deep Reinforcement Learning. Blog Post. 2020.

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

RQ2: Can rule-based heuristics lead to true creativity?

- Models generations cluster in the low-PPL zone.
- The high-PPL zone contains sparse reward.
- Heuristics ~= compass != leash
- Heuristics-driven search encourages <u>guided</u> exploration.

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following
Search		

• Heuristics-driven search steers generations by heuristic function.

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following
Search		

- Heuristics-driven search steers generations by heuristic function.
- Incorporating human workflows encodes proven patterns to ground so models' high-level planning.

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

Incorporating human workflows

- Motivation
 - From Single-Shot LLM \rightarrow Workflow Agent
 - Humans finish goals through structured workflows (gather \rightarrow decide \rightarrow act \rightarrow verify \rightarrow (loop*)).
- **Gap.** Raw prompting still guesses those hidden latent steps.
- **Solution.** Give the model a planner-executor loop aligned with the real-world workflow.

 Problem-Finding | Path Finding | Evaluation

 Search
 Hierarchical Planning
 Constraint-following

Examples of Human Workflows for LLM

Scientific discovery

Bran, et. al. 2024

Travel Planning

 $\begin{array}{l} \text{Gather preferences} \rightarrow \text{Build itinerary} \\ \rightarrow \text{Budget check} \end{array}$

Singh, et. al. 2024

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

Examples of Human Workflows for LLM

Customer service

 $\begin{array}{l} \mbox{Identify intent} \rightarrow \mbox{Retrieve policy} \\ \rightarrow \mbox{Resolve / escalate} \end{array}$

Huang, et. al. 2024

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

How good are workflows in Creative Tasks?

• They are effective.

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

Turning Point (TP)	Description
TP1 - Opportunity	The introductory event that sets the stage for the narrative.
TP2 - Change of Plans	A pivotal moment where the main goal of the narrative is defined or altered.
TP3 - Point of No Return	The commitment point beyond which the protagonists are invested in goals
TP4 - Major Setback	A critical juncture where the protagonists face significant challenges or failures.
TP5 - Climax	The peak of the narrative arc, encompassing the resolution of the central conflict.

Table 2: Turning Point (TP) Types: a turning point is an event (or plot moment) that significantly influences a plot progression (Papalampidi et al., 2019).

Tian Y, Huang T, Liu M, et al. Are Large Language Models Capable of Generating Human-Level Narratives? EMNLP, 2024.

Problem-Finding Path Finding Evaluation				
Search	Hierarchical Planning	Constraint-following		

Incorporating TP as latent workflow in the story outline

- improves overall narrative construction
- reduce plot holes
- enhance suspense and emotion provocation

_			SUSPENSI	Ŧ	Емо	TION PROV	OKING	OVER	ALL PREFI	ERENCE
	凸	Best (†)	Medium	Worst (\downarrow)	Best (\uparrow)	Medium	Worst (\downarrow)	Best (\uparrow)	Medium	Worst (\downarrow)
Outline-Only	-~-	7.9%	10.1%	82.0%	14.6%	24.7%	60.7%	13.5%	25.8%	60.7%
+ Self-generated	d TP	48.3%	42.7%	9.0%	39.3%	42.7%	18.0%	43.8%	37.1%	19.1%
+ Human TP		46.1%	42.7%	11.2%	48.3%	28.1%	23.6%	44.9%	32.6%	22.5%

Table 4: Human evaluated results in suspense, emotion provocation, and overall preference. We compare machine generations with and without the awareness of turning points (TP3, TP4, and TP5).

Problem-Finding Path Finding Evaluation				
Search	Hierarchical Planning	Constraint-following		

Rags to Riches	Riches to Rags	Man in a Hole	Double Man in a Hole	Icarus	Cinderella	Oedipus
Starts low and gradually rises, ending in a high state.	Starts high and gradually falls, ending in a low state.	Starts high, has a dilemma or crisis and finally finds a way out.	Two cycles of fall and rise.	A rise fol- lowed by a sharp fall.	A rise, fol- lowed by a fall, ending with a signif- icant rise.	A fall, fol- lowed by a rise, ending with a signif- icant fall.

Table 1. Story arc types that are derived from Vonnegut (1995) and are characterized by

transformations of the story's protagonist(s) across the plot progression.

Tian Y, Huang T, Liu M, et al. Are Large Language Models Capable of Generating Human-Level Narratives? EMNLP, 2024.

Problem-Finding Path Finding Evaluation					
Search	Hierarchical Planning	Constraint-following			

Incorporating explicit directives about story arcs helps improve narrative diversity

	Diversity	Тнеме	Setting	CONFLICT	CHARACTER	OVERALL
<u>_</u>	Outline-Only	5% 32%	32% 36%	5% 41%	23% 27%	23% 9%
	Arc-Enhanced	64 <i>%</i>	32%	55 %	50%	68%

Table 6: Win rates of the outline-only stories and storyarc enhanced stories. We focus on four specific aspects of diversity: theme, setting, conflict, and character.

Problem-Finding Path Finding Evaluation				
Search	Hierarchical Planning	Constraint-following		

Case Study of Web Agent Task

Sodhi, Paloma, et al. "SteP: Stacked LLM Policies for Web Actions." First Conference on Language Modeling.

Problem-Finding Path Finding Evaluation				
Search	Hierarchical Planning	Constraint-following		

Why Workflows Help?

- Search-space pruning the agent never explores illegal step permutations.
- **Constrained** human ordering enforces policy constraints (e.g., *authenticate* → *write* → *commit*).

Problem-Finding Path Finding Evaluation				
Search	Hierarchical Planning	Constraint-following		

Workflows

• Introducing workflows prune the search space.

Problem-Finding Path Finding Evaluation				
Search	Hierarchical Planning	Constraint-following		

How good are workflows in Creative Tasks

- They are effective.
- However, the number of workflows is limited

Capture mode	Example artifacts	Typical size
Demonstrations / traces	Click-streams, command-line history, code notebooks	10 ¹ – 10 ³ per user
SOP / run-books	Markdown docs, Confluence pages, RFCs	sparse
Live feedback	Thumbs-up, critique edits, inline comments	sparse

Problem-Finding Path Finding Evaluation			
Search	Hierarchical Planning	Constraint-following	
Search			

- Heuristics-driven search steers generations by heuristic function.
- **Incorporating human workflows e**ncodes proven human workflow patterns to ground models' high-level planning.
- Self-exploration enables autonomous learning.

Problem-Finding Path Finding Evaluation				
Search	Hierarchical Planning	Constraint-following		

What are the learning objectives?

- Self-exploration enables autonomous learning.
- From Trajectory set $T = \{\tau^i\}$, where $\tau^i = (s_0^i, a_0^i, s_1^i, a_1^i, s_2^i, a_2^i, ...)$
- We can learn
- Policy: $\pi_{\theta}(a_t|s_t)$
- Transition function: $f(S_t, a_t) \rightarrow S_{t+1}$
- Workflows/skills $\boldsymbol{\omega}$: $\pi_{\theta}(a_t|s_t, \boldsymbol{\omega})$

Problem-Finding Path Finding Evaluation				
Search	Hierarchical Planning	Constraint-following		

Self-exploration – learning dynamics

- Why exploration is important for creative planning tasks?
- Recall that in creative planning tasks, exploration in an environment with very sparse or even deceptive reward.
- MDP nature of the task.

	Problem-Finding Path Finding Evaluation	
Search	Hierarchical Planning	Constraint-following

Self-exploration – learning dynamics

• Both ReACT and TreeSearch approaches are **Unknown-MDP**-based. At each timestep, agents' observation space is constrained.

User query: What is the best-selling product of 2022?

a) ReACT

b) Tree-search ◯ Web page →→ Action

	Problem-Finding Path Finding Evaluation	
Search	Hierarchical Planning	Constraint-following

Self-exploration – learning dynamics

- Both ReACT and TreeSearch approaches are **Unknown-MDP**-based. At each timestep, agents' observation space is constrained.
- R2D2 constructs the search space leveraging stored trajectory information from a replay buffer. Transforming the task into a **Known MDP**.

User query: What is the best-selling product of 2022?

	Problem-Finding Path Finding Evaluation	
Search	Hierarchical Planning	Constraint-following

Better knowledge of environments leads to better agents

True (unknown) dynamics $P(s_{t+1} \mid s_t, a_t)$

Agent's **learned** dynamics model (after n samples) $\hat{P}_n(s_{t+1} \mid s_t, a_t)$

H-step model roll-out return under policy π :

$$G_{H}^{\pi}(s_{0};\hat{P}_{n}) = \sum_{t=0}^{H-1} \gamma^{t} \, r(s_{t},a_{t}) \quad ext{with} \; s_{t+1} \!\sim\! \hat{P}_{n}(\,\cdot \mid s_{t},a_{t}), \; a_{t} \!=\! \pi(s_{t})$$

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

Learning Policy in Creative Planning Tasks

Algorithm 1: ETO: Exploration-based Trajectory Optimization for LLM Agents **Input:** $\mathcal{D} = \{(u, a_1, o_1, ..., o_{n-1}, a_n)^{(i)}\}$: expert trajectory dataset for behavioral cloning, T_1 : number of behavioral cloning steps, I: number of iterations for ETO, T_2 : number of steps in training phase, π_{θ} : initial LLM policy. **Output:** Final policy π_{θ} // Behavioral cloning for i = 1 to T_1 do Optimize θ on BC objective: $\mathcal{L}_{SFT}(\pi_{\theta}) = -\mathbb{E}_{e \sim \mathcal{D}}[\pi_{\theta}(e|u)]$ // Iteratively learning from exploration failures for i = 1 to I do $\pi_{\text{base}} = \pi_{\theta}; \pi_{\text{ref}} = \pi_{\theta}$ Get base agent trajectories on \mathcal{D} : $\hat{e} = (u, \hat{a}_1, \hat{o}_1, ..., \hat{o}_{m-1}, \hat{a}_m) \sim \pi_{\text{base}}(e|u)$ Compare rewards of \hat{e} with expert trajectory e to get the failure-success pair: $e_w \succ e_l \mid u$ Construct contrastive trajectory dataset: $\mathcal{D}_p = \left\{ (u, e_w, e_l)^{(i)} \right\}$ for i = 1 to T_2 do Optimize θ on trajectory contrastive objective: $\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(u, e_w, e_l) \sim \mathcal{D}_p} \left| \log \sigma \left(\beta \log \frac{\pi_{\theta}(e_w | u)}{\pi_{\theta}(e_l | u)} - \beta \log \frac{\pi_{\text{ref}}(e_w | u)}{\pi_{\text{ref}}(e_l | u)} \right) \right|$ return π_{θ}

Song, Yifan, et al. "Trial and Error: Exploration-Based Trajectory Optimization of LLM Agents." Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024.

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

Learning Workflows in Creative Planning Tasks

Wang, Zora Zhiruo, et al. "Agent workflow memory." arXiv preprint arXiv:2409.07429 (2024).

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

Learning Skills from Explorations in Creative Planning Tasks

Wang, Zihao, et al. "Jarvis-1: Open-world multi-task agents with memory-augmented multimodal language models. IEEE Transactions on Pattern Analysis and Machine Intelligence (2024).

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

Research Questions of Self-exploration

- Strategic vs. Random exploration
- Transfer from high-data to low-data regime

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

Transfer from high-data to low-data regime

Xu X, Mei J, Li C, et al. MM-StoryAgent: Immersive Narrated Storybook Video Generation with a Multi-Agent Paradigm across Text, Image and Audio[J]. arXiv preprint arXiv:2503.05242, 2025.

	Problem-Finding Path Finding Evaluation	
Search	Hierarchical Planning	Constraint-following

Path-Finding – Overview and Background

- Search
- Hierarchical Planning
- Constraint-following

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

Hierarchical Planning

- Motivation
 - Long-horizon generation pain-points. Vanilla left-to-right models drift, repeat and lose global coherence after ~3–4 sentences.
- Solution pattern.
 - Decompose what to say (high-level plan) from how to say it (surface realization).
 - Planning ≈ selecting latent or explicit structure (keywords, sections, latent codes).
 - Realization = conditioned language model generation
- Benefits. Better topicality, diversity, and controllability

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

Hierarchical Planning

Decompose-then-solve

- Planner maps a hard goal *G* into simpler sub-goals $g_1 \dots g_k$ (outline, sub-queries, sub-tasks...).
- Executor(s) solve each g_i and compose their outputs to finish G.
- how the same abstract pattern instantiates in very different tasks.

Problem-Finding Path Finding Evaluation			
Search	Hierarchical Planning	Constraint-following	

Examples of Decompose-and-solve in Reasoning Tasks

Self-Ask

	GPT-3			
Q	uestion: Who live	ed longer, Theodor Haecker or Harry Vaughan		
A	re follow up ques	tions needed here: Yes.		
F	ollow up: How old	was Theodor Haecker when he died?		
lr di	itermediate answ ied.	er: Theodor Haecker was 65 years old when he		
F	ollow up: How old	d was Harry Vaughan Watkins when he died?		
Ir	termediate answ	er: Harry Vaughan Watkins was 69 years old when		
n S	e died. o the final answe	r is: Harry Vaughan Watkins		
0				
Q	Question: <u>Who was president of the U.S. when superconductivity</u> was discovered?			
A	re follow up ques	tions needed here: Yes.		
F	ollow up: When w	vas superconductivity discovered?		
Ir	termediate answ	er: Superconductivity was discovered in 1911.		
F	ollow up: Who wa	as president of the U.S. in 1911?		
Ir	itermediate answ	er: William Howard Taft.		
5	o the final answe	r is: William Howard Tart.		

Press, et. al. 2023

Least-to-most Prompting

Zhou, et. al. 2023

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

Examples of Decompose-and-solve in Agentic Tasks

Prasad, et. al. 2024

Huang, et. al. 2024

How good is LLM planning in Creative Tasks?

Tian Y, Huang T, Liu M, et al. Are Large Language Models Capable of Generating Human-Level Narratives? EMNLP, 2024.

Figure 2: Model criticism in latent space. Given a sample \tilde{x} , we first map it to latent states \tilde{z} using $P_c(z|\tilde{x})$.

Deng, Yuntian, Volodymyr Kuleshov, and Alexander M. Rush. "Model Criticism for Long-Form Text Generation." *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.* 2022.

Problem-Finding Path Finding Evaluation				
Search	Hierarchical Planning	Constraint-following		

How good is LLM planning in Creative Tasks?

Deng, Yuntian, Volodymyr Kuleshov, and Alexander M. Rush. "Model Criticism for Long-Form Text Generation." *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*. 2022.

Problem-Finding Path Finding Evaluation				
Search	Hierarchical Planning	Constraint-following		

How good is LLM planning in Creative Tasks?

- Latent variables: event triggers
- Takeaway:
- Human and machine generations are different from a latent space perspective.

Is it possible to fix with SIT?

Tian Y, Pan Z, Peng N. Detecting Machine-Generated Long-Form Content with Latent-Space Variables[C]//Findings of the Association for Computational Linguistics: EMNLP 2024. 2024: 10394-10408.

	Problem-Finding Path Finding Evaluation	
Search	Hierarchical Planning	Constraint-following

Is it possible to fix with SIT?

Stage	What the model sees during training	What it learns
1. Pre-training (next-token prediction on trillions of tokens)	Raw web text, code, forum Q&A, documentation, chat logs, etc.	 The completion <u>habit</u>: given a context, continue it coherently. Statistical associations between "instruction- like" language and "answer-like" language.
2. Supervised Instruction Tuning (a.k.a. "SFT" or "instruction fine-tune")	Curated tuples (instruction, ideal answer)	 L_{SFT}(θ) = -∑^T_{t=1} log p(θ) (y_t x, y < t) A direct supervised loss that says: when you see something that looks like an instruction, output something that looks like the paired answer.
		•

Not very likely, because the training objective is at surface level.

Problem-Finding Path Finding Evaluation			
Search	Hierarchical Planning	Constraint-following	
		J	

Is it possible to fix with RLHF?

Stage	What the model sees during training	What it learns
1. Pre-training (next-token prediction on trillions of tokens)	Raw web text, code, forum Q&A, documentation, chat logs, etc.	 The completion <u>habit</u>: given a context, continue it coherently. Statistical associations between "instruction- like" language and "answer-like" language.
2. Supervised Instruction Tuning (a.k.a. "SFT" or "instruction fine-tune")	Curated tuples (instruction, ideal answer)	 L_{SFT}(θ) = -∑^T_{t=1} log p(θ) (y_t x, y < t) A direct supervised loss that says: when you see something that looks like an instruction, output something that looks like the paired answer.
3. Reinforcement Learning from Human Feedback (RLHF / RLAIF)	Human raters rank multiple candidate completions; the model is optimized to get higher rankings (often with PPO).	 Soft "reward" for helpfulness, harmlessness, and honesty. Preference for complying with the literal request rather than ignoring or defying it.
Would RLHF be the savior?	Maybe, depends on the data regime	

Problem-Finding Path Finding Evaluation				
Search	Hierarchical Planning	Constraint-following		

Hierarchical Planning

• Decompose-then-solve

- Story generation
 - 5-line stories
 - 200 words stories
 - 500 words stories
 - Detailed plans
- Lyric/poetry generation
 - Content planning
 - Other constraints

Problem-Finding Path Finding Evaluation					
Search	Hierarchical Plannir	ng Constraint-following			
Story Generation Given Titles					
	Title: gymnastics				
Without Storyline Pla	nning With	Storyline Planning			
Story (generated):	Storyl	ine (generated): wanted -> decided			
I wanted to learn how to dra	w> clas	s -> practiced -> well			
So, I decided to go to the gy	m. Story	(generated):			
I went to the local gym.	l <u>wante</u>	ed to be a gymnast.			

I got a lot of good grades.

I was very happy.

I decided to learn how to do gymnastics.

I decided to take a <u>class</u>.

I <u>practiced</u> every day.

I was able to do well on the class.

Plan-And-Write: Towards Better Automatic Storytelling. Yao et al. (AAAI 2019).

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

Plan-and-Write Hierarchical Generation

- The benefits of the storyline
 - O Having a big picture.
 - O The ability to model "what happens next" rather than "what's the next word".
 - O More fun interaction and control.
- The challenges of incorporating the storyline
 - O How to get the storyline?
 - O How to use the storyline?

Plan-And-Write: Towards Better Automatic Storytelling. Yao et al. (AAAI 2019).

Problem-Finding Path Finding Evaluation				
Search	Hierarchical Planning	Constraint-following		

No Annotation? Extracting Storylines

Title: christmas shopping

Story: Frankie had christmas shopping to do.

She went to the store.

Inside, she walked around looking for gifts.

Soon her cart was full.

She **<u>paid</u>** and took her things home.

Storyline (unsupervised extraction): Frankie -> store -> gifts -> cart -> paid

Extraction tool: the RAKE (Rapid Automatic Keyword Extraction) algorithm.

Problem-Finding Path Finding Evaluation			
Search	Hierarchical Planning	Constraint-following	

Hierarchical Planning

• Decompose-then-solve

- Story generation
 - 5-line stories
 - 200 words stories
 - 500 words stories
 - Detailed plans
- Lyric/poetry generation
 - Content planning
 - Other contraints

Extending to longer stories

Prompt: Earth has gained a new season, unlike anything currently known.

BART Generated Story*:

I was in my bed, in my own room, in the middle of a forest, when the world stopped. It was the first time in my life that I had felt I had a sense of peace. My family and me, myself, were gone, we had all been taken from us. The only thing our family had left were the three children and my world, but my wife and I were the only survivors. There were we, the three of us. But ourselves, our children were all gone. And the only reason why me and our family survived was because ours had become ourselves..... No longer were you and I to be each other. Now we were just two. All our memories of us, all ours. Nothingness. Only all of us, and my children, each of us...

*BART: Lewis et al. ACL 2020

Problem-Finding Path Finding Evaluation			
Search	Hierarchical Planning	Constraint-following	

Plot Structure Representations

<V> opened <A0> ent0 <A1> ent0 eyes <V> looking <A0> to ent0 ent1 <V> found <A0> ent0 <V> clipped <A1> ent1 <V> flopped <A0> ent0 ears <V> was <A0> the hunger <A1> gone <V> clouded <A0> Confusion <A1> ent1 mind <V> tilted <A0> ent0 <A1> ent2 <V> approached <A1> ent0 <A2> a nearby puddle <V> looked <A0> ent0

I opened my eyes. Looking to my razor-sharp claws, I found that they were now neatly clipped. My ears flopped on either side of my head lazily, too soft and formless to hunt properly. Most of all, the hunger was gone. Confusion clouded my mind and I tilted my head instinctively. I approached a nearby puddle and looked in.

Fan et al. (2019)

Storyline	Carrie \rightarrow bike \rightarrow sneak \rightarrow nervous \rightarrow
(Extracted)	leg
Story	Carrie had just learned how to ride a
Human	bike. She didn't have a bike of her
Written)	own. Carrie would sneak rides on her
	sister's bike. She got nervous on a
	hill and crashed into a wall. The bike
	frame bent and Carrie got a deep gash
	on her leg.

<u>Yao et al. (2019)</u>

Input (Previously Un- seen)	Extracted Event(s)
He reaches out to Re- mus Lupin, a Defence Against the Dark Arts teacher who is eventu- ally revealed to be a werewolf.	$\langle male.n.02 get-13.5.1 \emptyset 0 \rangle$, $\langle ORGANIZATION say-37.7-1 monster.n.01 \emptyset \rangle$

Martin et al. (2017)

Constraint-following

Example Story and Extracted Plot

Prompt: Earth has gained a new season, unlike anything currently known.

Human Written Story: [UNK] by fire and sand whipping across night and day, day and night. [...]

Search

Waking up in cold sweats. The light from the fire is too bright. Can't breathe on the tops of the walls. The air is too hot. It'll *fry your lungs, scorch your skin,* and *melt your hair*. We *found that* out the hard way.

We're not scientists. Just slaves. *Trapped* in concrete cells, *lined with lead* to *keep the radiation out*, to *keep them out* **Extracted Plot**: <A1> ent 1 and sand <V> whipping </s>[...]

</s> </s> <A0> ent 2 <V> fry <A1> your lungs # <A0> ent 2 <V> scorch <A1> your skin # <A0> ent 2 <V> melt <A1> your hair </s> <A0> ent 3 <V> found <A1> that </s> </s> </s> <V> Trapped <A2> lined with lead to # <V> lined <A2> with lead # <V> keep <A1> the radiation <A2> out # <V> keep <A1> them <A2> out...

	Problem-Finding Path Finding Evaluation	
Search	Hierarchical Planning	Constraint-following

Improving Story Plot with Aristotle's Poetics

- The elements of story in order of importance.
 - Event choice and arrangement (Plot)
 - Character
 - Relevant content (Thought)
 - Diction
 - We focus on the planning step

Problem-Finding Path Finding Evaluation			
Search	Hierarchical Planning	Constraint-following	

Plan-And-Write with Pretrained LMs

Training Rescorers: Event - Inter Shuffle

Prompt: People gather around a campfire to tell the story of a legend ,who actually sits among them

<A1> ent 0 orange glow <V> stood <A2> ent 6 night </s> <A1> ent 3 <V> emanating <A2> ent 3 </s> <A0> ent 2 <V> felt <A1> the cold <A2> ent 2 their backs # <A0> ent 2 <V> faced <A1> ent 3 </s> <A1> ent 2 eyes <V> stayed <A2> upon the saving light # <A0> ent 4 <V> stared </s>... <A1> ent 3 <V> emanating <A2> ent 3 </s>
<A1> ent 8 <V> grew <A2> quieter , darker
</s>
<A2> ent 5 some <A1> ent 5 <V> came #
<A0> a bearded , old man <V> drawing
<A1> ent 11 <A2> close # <A1> ent 13 <V>
burn </s>
<A0> orange <V> glow # <A1> ent 1 <V>
sat # <A1> ent 1 <V> paralyzed </s> ... 138

Training Rescorers: Event - Intra Shuffle

Prompt: People gather around a campfire to tell the story of a legend ,who actually sits among them

Positive <A0> ent 2 <V> felt <A1> the cold <A2> ent 2 their backs # <A0> ent 2 <V> faced <A1> ent 3 </s> <A1> ent 2 eyes <V> stayed <A2> upon the saving light # <A0> ent 4 <V> stared </s>...

Negative <A0> ent 2 <V> faced <A1> ent 3 # <A0> ent 2 <V> felt <A1> the cold <A2> ent 2 their backs </s> <A0> ent 4 <V> stared # <A1> ent 2 eyes <V> stayed <A2> upon the saving light </s>...

Training Rescorers: Event - Verb Shuffle

Prompt: People gather around a campfire to tell the story of a legend ,who actually sits among them

Positive

<A0> ent 9 <V> roamed <A1> the woods #
<A0> ent 9 <V> consumed <A1> ent 6 of the
night </s> <A0> The wind <V> began <A1>
to blow with cold intention # <A1> The wind
<V> blow # <A0> ent 7 <V> danced # <A1>
ent 7 <V> shimmered # <A1> moonlight
<V> began ...

Negative<A0> ent 9 <V> consumed <A1> the woods# <A0> ent 9 <V> roamed <A1> ent 6 ofthe night </s> <A0> The wind <V>shimmered <A1> to blow with coldintention # <A1> The wind <V> began #<A0> ent 7 <V> danced # <A1> ent 7 <V><V> blow # <A1> moonlight <V> began ...140

Problem-Finding Path Finding Evaluation			
Search	Hierarchical Planning	Constraint-following	

Performances of the Classifiers

- Three different event shuffle strategies
 - inter-sentence shuffled events
 - intra-sentence shuffled events

.....

 verb-s 	nuttlea events			
Plot Elements		XGB	CNN	RoBERTa
Relevar	nce	55.2	56.0	89.3
Entity		64.1	76.0	92.3
	Inter-Shuffled	55.4	53.0	96.6
Event	Intra-Shuffled	58.5	75.0	97.3
	Verb-Shuffled	76.1	75.0	95.8

Test binary classification accuracy of three different models on three aspects of Aristotel's Poetic theory.

Problem-Finding Path Finding Evaluation			
Search	Hierarchical Planning	Constraint-following	

Incorporating the Rescorers

Mixture Weight Training & Ranking Accuracy

Rescorer	$ $ RA \uparrow	V:T↑	$ $ E \uparrow
All 5	0.43	2.07	7.15
All 4 (-intra)	0.35	1.72	8.78
Inter-event	0.37	1.76	8.87
Intra-event	0.16	2.01	6.58
Verb-event	0.15	1.66	8.89
Entity	0.17	1.68	9.18
Relevance	0.17	1.71	8.89

Table 3: Ranking accuracy (RA) and generated plot metrics i.e Verb:Token ratio (V:T), Entities(E) for rescorer ablations

$$f_{\lambda}(\mathbf{x}, \mathbf{z}) = \sum_{i}^{m} -\log p(z|z < i, \mathbf{x}) + \sum_{j}^{|A|} \lambda_{j} a_{j}(\mathbf{x}, z_{i...m})$$
BART ROBERTa

$$a_j(\mathbf{x}, z_{i\dots m}) = p_j(l_{pos} | \mathbf{x}, z_{i\dots m})$$

142

Search

Hierarchical Planning

Constraint-following

Naïve Plot vs. Aristotelian Plot

Prompt: Earth has gained a new season, unlike anything currently known.

Naïve Plot: <A0> ent 1 <V> see </s> <A0> we $<\vee>$ know <A1> ent 0 # <A0> we ' ve $<\vee>$ seen </s> </s> </s> </s> </s> </o> ent 4 </s> <A0> We've all $\langle \rangle$ seen $\langle A1 \rangle$ ent 1 $\langle s \rangle \langle A0 \rangle | \langle \rangle$ mean # <A0> ent 2 <V> know </s> <A0> You <V> know # <A0> I've- <V> seen # <A0> you </>< seen- # < A0> We < />> see < A1> ent 2 </s> <A0> the first one <V> see # <A1> we <V> been <A2> ent 2 of our species </s> </s> <A0> you ' $<\lor$ seen <A2> ent 3 it </s> </s> <A1> ent 4 <V> stood </s> </s> <A2> a strange light <V> reflecting # <A0> the light <V> blinding <A1> ent 3 </s > <A0 > They <V > call <A1 > ent 5 <A2 > ent4 of the world </s> </s>

Aristotelian Plot: <A1> <A0> ent 0 <V> thought </s> </s> </s> <A0> ent 3 the planet Earth <V>lived <A1> a long and happy life </s> <A0> a species <V> survive <A1> ent 0 's harsh environment </s> <A0> The humans </> survive </s> <A0> the first $<\vee>$ notice <A1> it </s> <A0> we <V> see <A1> ent 1 </s> </s><A1> ent 2 <V> grew </s> <A1> The sun <V> shining </s> </s> <A2> ent 3 <V> covered <A1> ent 7 </s> </s> </s> seemed <A1> like the perfect time </s> <A1> a new season <V> begin </s> <A0> no one <V> know <A1> why </s>

Problem-Finding Path Finding Evaluation			
Search	Hierarchical Planning	Constraint-following	

Generated Story from Aristotelian Plot

Prompt: Earth has gained a new season, unlike anything currently known.

The Earth is more beautiful than it thought! It's the most beautiful planet. The Earth is more beautiful than it thought! It's the most beautiful planet. The sun was shining bright, and the air was crisp, yet the air itself was cold. Everything was so bright. It was the perfect day for earth to be beautiful. Everyone on the planet Earth had lived a long and happy life, this planet has been home to the human race for thousands of years. The humans were a species that had been able to survive through Earth's harsh environment. the humans could survive in these harsh conditions. But one day Earth had a new life, and we were the first to notice it. In the middle of the night, we could see something, a small, dark cloud. A small, white cloud, it's size was almost invisible. Then that cloud grew. And it grew... The sun, shining bright.. There was no sun. All the light was black and it covered the sky. Every day the sky was a dark blue. No matter the time of day, it never seemed like the perfect time, it was a beautiful day. For a new season to begin. Yet no one could know why. Why did we not have a new cycle?"

Pairwise win rates for the Aristotelian Plot system and two best baselines. The differences are significant ($\alpha < 0.05$) per Wilcoxon signed-rank test.

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

Hierarchical Planning

• Decompose-then-solve

- Story generation
 - 5-line stories
 - 200 words stories
 - 500 words stories
 - Detailed plans
- Lyric/poetry generation
 - Content planning
 - Other contraints

Problem-Finding Path Finding Evaluation			
Search		Hierarchical Planning	Constraint-following
Extending to Even Longer Stories			
Input	Premise	AI researchers Kevin, Yuandong, Nany create a system for automatically high-quality long stories, aiming their work to a prestigious conf	yun, and Dan generating to submit Gerence.

Problem-Finding Path Finding Evaluation				
Se	arch	Hierarchica	l Planning	Constraint-following
Re ³	Story (200	0+ Words))	
	Premis e	AI researchers Kevi create a system for high-quality long their work to a	n, Yuandong, Nanyun >r automatically ger stories, aiming to prestigious confer	, and Dan herating submit ence.
Re ³ Story	<pre>[80 words] Kevin walked over to folders on top, which neural networks for Kevin started to read that were designed th or guidance from hum he recalled the effor They were lucky they Yuandong Li[222 Kevin's eye was cauce the new algorithm's than 500 words, but opened up two other words] Kevin rubbed his har findings; he also ne words] they were going to s submit one paper, wh Kevin felt like all else; at this p words]</pre>	b his desk and sat down, ch contained detailed not language processing ad through the file thoro to write reasonably long man inputs[118 words bort that led to this fina y managed to get their ha words] ght by one number that wa ability to create length the algorithm had genera files that contained sev ads together as he decide eeded to work on an offic submit a paper on their w hich would be a joint pap his hard work was finall oint, he simply wanted to	looking at it with disc es of his latest exper [137 words] ughly, detailing his la and coherent text autor] l result[54 words nds on two excellent re s highlighted in the la y and coherent text on ted many more than tha eral thousand words of d to contact his super ial presentation for the ork at the next major er by Nanyun and Kevin y paying off, and he d o focus on research and	<pre>gust. There was a pile of manila iments for writing programs using atest results on language processing matically with minimal supervision] esearchers - Nanyun Zhang and ast report; this number represented its own. The text contained more t - several thousands in fact. Kevin AI generated text each[52 visor immediately with these new heir upcoming conference[753 conference. They were only going to [119 words] id not want to think about anything a the upcoming conference[551</pre>

	Problem-Finding Path Finding Evaluation	
Search	Hierarchical Planning	Constraint-following

Major Challenges

• Long-range plot coherence

• Relevance to premise

• Long-range factual consistency

|--|

Search

Re³

Story

Hierarchical Planning

Constraint-following

Long-Range Coherence

e

AI researchers Kevin, Yuandong, Nanyun, and Dan Premis create a system for automatically generating high-quality long stories, aiming to submit their work to a prestigious conference.

Kevin walked over to his desk and sat down, looking at it with disgust. There was a pile of manila folders on top, which contained detailed notes of his latest experiments for writing programs using neural networks for language processing. ... [137 words]...

Kevin started to read through the file thoroughly, detailing his latest results on language processing that were designed to write reasonably long and coherent text automatically with minimal supervision or guidance from human inputs. ... [118 words] ...

he recalled the effort that led to this final result. ... [54 words]...

They were lucky they managed to get their hands on two excellent researchers - Nanyun Zhang and Yuandong Li ... [222 words]...

Kevin's eye was caught by one number that was highlighted in the last report; this number represented the new algorithm's ability to create lengthy and coherent text on its own. The text contained more than 500 words, but the algorithm had generated many more than that - several thousands in fact. Kevin opened up two other files that contained several thousand words of AI generated text each. [52]

Kevin rubbed his hands together as he decided to contact his supervisor immediately with these new findings; he also needed to work on an official presentation for their upcoming conference ... [753

they were going to submit a paper on their work at the next major conference. They were only going to submit one paper, which would be a joint paper by Nanyun and Kevin ... [119 words] ...

Kevin felt like all his hard work was finally paying off, and he did not want to think about anything else; at this point, he simply wanted to focus on research and the upcoming conference.[55]

		Problem-Finding Path Finding Evaluation	
Se	arch	Hierarchical Planning	Constraint-following
Pren	nise Relev	ance	
	Premis e	AI researchers Kevin, Yuandong, Nanyun create a system for automatically gen high-quality long stories , aiming to their work to a prestigious confer	, and Dan merating submit ence.
Re ³ Story	<pre>[80 words] Kevin walked over to folders on top, which neural networks for Kevin started to real that were designed t or guidance from hum he recalled the effor They were lucky they Yuandong Li[222 Kevin's eye was cauge the new algorithm's than 500 words, but opened up two other words] Kevin rubbed his har findings; he also new words] they were going to s submit one paper, wh Kevin felt like all else; at this porter to the submit one paper, where t</pre>	his desk and sat down, looking at it with disc h contained detailed notes of his latest exper- language processing[137 words] d through the file thoroughly, detailing his la o write reasonably long and coherent text autor an inputs[118 words] rt that led to this final result[54 words managed to get their hands on two excellent re- words] ht by one number that was highlighted in the la ability to create lengthy and coherent text on the algorithm had generated many more than that files that contained several thousand words of ds together as he decided to contact his super- eded to work on an official presentation for the ubmit a paper on their work at the next major of ich would be a joint paper by Nanyun and Kevin his hard work was finally paying off, and he di- point, he simply wanted to focus on research and	<pre>gust. There was a pile of manila iments for writing programs using atest results on language processing matically with minimal supervision] esearchers - Nanyun Zhang and ast report; this number represented its own. The text contained more t - several thousands in fact. Kevin AI generated text each[52 visor immediately with these new heir upcoming conference[753 conference. They were only going to [119 words] id not want to think about anything I the upcoming conference[551</pre>

	Problem-Fin	ding Path Finding Evaluation	
Se	arch Hie	rarchical Planning	Constraint-following
Long	g-Range Factual	Consistency	
	Premis eAI researc create a high-qua their	hers Kevin, Yuandong, Nanyun system for automatically gen lity long stories, aiming to work to a prestigious confere	, and Dan herating submit ence.
Re ³ Story	<pre>Kevin walked over to his desk and folders on top, which contained de neural networks for language proce Kevin started to read through the that were designed to write reason or guidance from human inputs he recalled the effort that led to They were lucky they managed to ge Yuandong Li[222 words] Kevin's eye was caught by one numb the new algorithm's ability to create than 500 words, but the algorithm opened up two other files that con words] Kevin rubbed his hands together as findings; he also needed to work of words] they were going to submit a paper submit one paper, which would be a Kevin felt like all his hard work else; at this point, he simpl words]</pre>	<pre>sat down, looking at it with disc etailed notes of his latest experi- essing[137 words] file thoroughly, detailing his la hably long and coherent text autom .[118 words] o this final result[54 words] et their hands on two excellent re- per that was highlighted in the la- eate lengthy and coherent text on had generated many more than that ntained several thousand words of s he decided to contact his supervon on an official presentation for th on their work at the next major of a joint paper by Nanyun and Kevin was finally paying off, and he d: y wanted to focus on research and</pre>	<pre>gust. There was a pile of manila iments for writing programs using atest results on language processing matically with minimal supervision] esearchers - Nanyun Zhang and ast report; this number represented its own. The text contained more t - several thousands in fact. Kevin AI generated text each[52 visor immediately with these new heir upcoming conference[753 conference. They were only going to [119 words] id not want to think about anything a the upcoming conference[551</pre>

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

Hierarchical Planning

• Decompose-then-solve

- Story generation
 - 5-line stories
 - 200 words stories
 - 500 words stories
 - Detailed plans
- Lyric/poetry generation
 - Content planning
 - Other contraints

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning Constraint-following	
A Few Ste	eps Later	
Outline	 Jenna meets Brian and immediately feels drawn to him. a. Jenna meets Brian and feels an instant connection to him. b. The two start dating and Jenna begins to fall in love. Jenna starts to think marriage isn't so bad after all when Brian seems like the perfect man for her. a. Jenna starts to think marriage isn't so bad when Brian seems like the perfect man for her. b. After much soul searching, Jenna decides that she wants to marry Brian. 	
	 4. However, when Brian's ex shows up and tries to win him back, Jenna realizes it's better to be alone than with someone who doesn't truly love you. a. Jenna overhears a conversation between Brian and his ex, Teresa. b. Jenna confronts Brian and Brian confesses he still has feelings for Teresa. c. Jenna breaks up with Brian. d. Jenna decides that it's better to be alone than with someone who doesn't truly love you. 	

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

Hierarchical Planning

• Decompose-then-solve

- Story generation
 - 5-line stories
 - 200 words stories
 - 500 words stories
 - Detailed plans
- Lyric/poetry generation
 - Content planning
 - Other contraints

	Problem-Finding Path Finding Evaluation	
Search	Hierarchical Planning	Constraint-following
Alexa, he	p me write a song!	
	Alexa, I want to write a song for my daddy's b 40 th birthday next Wednesday. My dad has or and he likes to play games.	irthday. It's his ange beards
	Great! Anything else you want to include?	
	Oh yeah! Let him know I love him to the Moor	l.

Sure, one moment...

Dad, happy **40th** birthday I hope your **birthday** is as happy as it can be We will celebrate with the **games** you like to play

A day of fun and laughter that's carefree Even your **orange beards** would feel delighted

This song cannot express how much I love you Please remember that I **love** you **to the moon**

Problem-Finding | Path Finding | Evaluation
Search
Hierarchical Planning
Constraint-following

Our Approach – An Overview

Problem-Finding Path Finding Evaluation		
Search	Hierarchical Planning	Constraint-following

Melody Constraints = Syllable Plans

• **Constraint 1:** The **segmentation** of music phrase should align with the segmentation of lyric sentences

• **Constraint 2:** *Music rhythm should align with lyrics meter. Shorter note durations are more likely to be associated with unstressed syllables.*

Segment 1: [0, 1, 0, 1, 0, 1, 0, 1], Segment 2: [0, 1, 0, 1, 0, 1]

Problem-Finding Path Finding Evaluation				
Search	Hierarchical Planning	Constraint-following		

Melody-Constrained Decoding

- Constrained decoding for melody-lyric alignment
 - Retrieve pronunciations from the CMU dictionary
 - E.g. amazing □ ['AH0 M EY1 Z IH0 NG'] □ 0 1 0
 - Check if satisfy the rhythm alignment constraints

• Hard Const
$$p'(w_i) = \begin{cases} p(w_i), & \text{if } w_i \text{ satisfies rhythm alignment,}^{=1} \\ \alpha p(w_i), & \text{otherwise.} \end{cases}$$

Problem-Finding Path Finding Evaluation					
Search	Hierarchical Plan	ning	Constraint-following		
Example resu	ts				
Title: Happy birthday, Melody: Mary had a li Genre: classic rock	Dad More songs ttle lamb https://sites	in demo page: .google.com/view/ly	yricsgendemo		
]	Happy Birthday, Dad	C	Our Model		
$J = \frac{120}{C}$ $IIap - py birth - C$	c G c day to you dad, you and I, ce - la	e-brate,			
All the me-mo - r	e G c ies of that day we would che - rish them	n. Now			
cake and can - dle	c G c for the joy, Love is here, for	a hug,			
Ev - cry-where is	c o filled with love to - ge-ther we are	e			

- 1. The comparison between baselines vs shows incoherent texts reduces singability & intelligibility
- 2. vs shows the efficacy of our plan-and-write with syllable control
- 3. vs & shows the efficacy of rhythm alignment
- 4. Soft rhythm constraint is better than hard rhythm constraint in terms of overall quality.

Problem-Finding Path Finding Evaluation				
Search	Hierarchical Planning	Constraint-following		

))

Extension – An Edit Framework Leveraging Strong LLMs

REFFLY: Melody-Constrained Lyrics Editing Model. Zhao et al. (NAACL 2025).

REFFLY: Melody-Constrained Lyrics Editing Model. Zhao et al. (NAACL 2025).

Problem-Finding | Path Finding | Evaluation

Search

Hierarchical Planning

Constraint-following

Same framework, different applications

Sonnet 18 by William Shakespeare Sonnets Generation Shall I compare thee to a summer's day? Sonnet: 14-line poem B Thou art more lovely and more temperate: Α with rigorous Rough winds do shake the darling buds of **May**, B meter-and-rhyme And summer's lease hath all too short a date; constraints. Sometime too hot the eye of heaven shines, D And often is his gold complexion **dimm'd**; Structure: 3 Quatrains + And every fair from fair sometime declines, D 1 Couplet By chance or nature's changing course **untrimm'd**; Rhyme Scheme: But thy eternal summer shall not **fade**, Nor lose possession of that fair thou ow'st; ABAB CDCD EFEF GG Nor shall death brag thou wander'st in his **shade**, When in eternal lines to time thou grow'st: lambic Pentameter: G So long as men can breathe or eyes can see, Shall I compare thee to a Summers day? So long lives this, and this gives life to thee. 10 0 0 0 1 0 1

Zero-Shot Sonnet Generation with Discourse-Level Planning and Aesthetics Features. Tian and Peng, (NAACL), 2022.

Problem-Finding | Path Finding | Evaluation

Evaluation for Creative Tasks

Evaluating Large Output Spaces

Problem-Finding | Path Finding | Evaluation

Beyond System Outputs

Evaluation Case Study

Creative tasks are inherently open-ended, with large output spaces and subjective.

How do we evaluate this large output space effectively?

Evaluating	Large	Output	Spaces

Problem-Finding | Path Finding | Evaluation

Beyond System Outputs

Evaluation Case Study

Two Possible Routes

1.

We make interfaces to make large output-space evaluation more efficient.

2. We evaluate systems as they get used, rather than their outputs.

This is known as product evaluation vs. process evaluation.

Evaluating	Large	Output	Spaces

Problem-Finding | Path Finding | Evaluation

Beyond System Outputs

Evaluation Case Study

Two Possible Routes

We make interfaces to make large output-space evaluation more efficient.

2. We evaluate systems as they get used, rather than their outputs.

Problem-Finding Path Finding Evaluation				
Evaluating Large Output Spaces	Bevond System Outputs	Evaluation Case Study		

Supporting Sensemaking of Large Language Model Outputs at Scale

KATY ILONKA GERO, Harvard University, USA CHELSE SWOOPES, Harvard University, USA ZIWEI GU, Harvard University, USA JONATHAN K. KUMMERFELD, University of Sydney, Australia ELENA L. GLASSMAN, Harvard University, USA

"Users typically engage in iterative inspection of 10s to 100s of LLM responses via a chat interface (which is slow) or by pasting responses into a spreadsheet (which is arduous and clunky).

We call this **mesoscale** ("middle scale") of LLM response sensemaking."

Small-scale: < 10 responses Meso-scale: 10-100s of responses Large-scale: 100+ responses

Problem-Finding Path Finding Evaluation				
Evaluating Large Output Spaces	Bevond System Outputs	Evaluation Case Study		

Supporting Sensemaking of Large Language Model Outputs at Scale

KATY ILONKA GERO, Harvard University, USA CHELSE SWOOPES, Harvard University, USA ZIWEI GU, Harvard University, USA JONATHAN K. KUMMERFELD, University of Sydney, Australia ELENA L. GLASSMAN, Harvard University, USA

"Users typically engage in iterative inspection of 10s to 100s of LLM responses via a chat interface (which is slow) or by pasting responses into a spreadsheet (which is arduous and clunky).

Small-scale: < 10 responses Meso-scale: 10-100s of responses Large-scale: 100+ responses

We call this **mesoscale** ("middle scale") of LLM response sensemaking."

How do we help users to do mesoscale evaluation?

	Problem-Finding Path Finding Evaluation					
Eva	aluating Large Output Spaces	Beyond	System Outputs	Evaluation Case Study		
Feature: Exact Match						
	GPT4			GPT 3.5		
16	Faites un emploi du temps pour organiser vos révisions. Conc les plus difficiles en premier. Revoyez ensuite les sujets que v faire des pauses trop longues. Dormez bien pour être bien rej Bonne chance!	entrez-vous sur les sujets ous maîtrisez. Évitez de posé pendant l'examen.	Pour être performant à votre examen, je vous vous reposer suffisamment chaque nuit, de r régulièrement en petits segments et utilisez mémoriser l'information. Ne négligez pas les mentale. Bonne chance pour votre examen!	recommande de planifier votre temps de manière efficace, de nanger sainement et de bien vous hydrater. Révisez des techniques comme les cartes mémoire ou les résumés pour pauses pour maintenir votre concentration et éviter la fatigue		
17	Créez un planning d'étude détaillé. Divisez votre temps entre les différents sujets. Révisez de manière active: faites des tests pratiques, résumez les informations. Faites des pauses régulières pour éviter la surcharge mentale. Assurez-vous de bien dormir et de manger équilibré. Bonne chance!		Pour bien vous préparer à votre examen final de diviser le matériel en sessions d'étude cr suffisamment et de manger sainement. Ré- expliquant à voix haute. N'oubliez pas de re clairs. Bonne chance pour votre examen fin	, je vous recommande de créer un planning de révision détaillé, urtes, de prendre des pauses régulières, de dormir ez activement en posant des questions à vous-même et en der hydraté et de rester motivé en vous fixant des objectifs		
18	Établissez un planning d'étude avec des pauses. Révisez les vous êtes le plus énergique. Pratiquez des examens anciens p format. Reposez-vous bien la nuit avant l'examen. N'oubliez p hydrater correctement. Bonne chance!	na tières difficiles quand po ir vous habituer au las de manger et de vous	Pour performer à votre meilleur lors de votre de pratiquer des exercices régulièrement, de distractions, mangez sainement et prenez d examen final!	examen, je recommande de créer un plan de révision détaillé, vous reposer suffisamment et de rester organisé. Évitez les s pauses pour éviter la fatigue. Bonne chance pour votre		
19	Planifiez votre temps. Faites un emploi du temps qui alloue de chaque sujet. Prenez des pauses régulières, mangez saineme avec des fiches et pratiquez des examens précédents. La veil vous et reposez-vous. N'oubliez pas de rester positif. Bonne de	es périodes d'étude pour nt et dormez bien. Révisez le se l'examen, détendez- ch nce.	Pour performer au mieux lors de votre exame qui inclut des séances de révision régulières, pratique avec des exercices et des questions et de rester hydraté. Enfin, restez confiant er	en final, je vous recommande de créer un plan d'étude détaillé des pauses pour reposer votre cerveau, et des sessions de d'examen. Assurez-vous de bien dormir, de manger sainement pacités et gardez une attitude positive. Bonne chance!		
20	Faites un planning d'études avec des pauses. Revisez vos not Pratiquez des exemples concrets. Dormez suffisamment, alim la pression avec une activité relaxante tous les jours. Assurez et non de mémoriser seulement. Bonne chance!	es quotidiennement. Ientez-vous bien. Pelâchez -vous de bien concendre	Pour Figur vous préparer à votre examen, je ve semaine à venir. Révisez régulièrement en pe mémorisation telles que la répétition espacée sainement. Bonne chance pour votre examen	ous recommande de créer un planning d'étude détaillé pour la tites sessions, faites des résumés, utilisez des techniques de e, et prenez soin de vous en vous reposant et en mangeant e !		

Simple: Find repeating substrings (phrases), and highlight them with color across responses.

	Problem-Finding Path Finding Evaluation	
Evaluating Large Output Spaces	Beyond System Outputs	Evaluation Case Study
Evaluating Large Output Spaces	Deyona System Outputs	

Feature: Unique Words

_	_	_	_	
-	n	т.		
-	۲		4	
-			-	

Élaborez un plan de révision, divisez vos matières en sessions quotidiennes. Revoyez des notes, faites des fiches récapitulatives. Pratiquez avec des vieux examens. Prenez des pauses régulières, dormez suffisamment et mangez bien pour maintenir la concentration. Évitez le stress en faisant des activités relaxantes.

Faites un planning quotidien incluant des blocs d'étude, des pauses, du sommeil suffisant et une alimentation équilibrée. Revisez les cours, faites des flashcards pour les éléments clés. Pratiquez les anciens examens pour se familiariser avec le format d'examen. Prenez des pauses régulières pour rafraîchir l'esprit. Répétez à haute voix et enseignez aux autres pour mieux comprendre. Bonne chance!

GPT 3.5

Pour vous préparer au mieux pour votre examen final, je vous recommande de créer un emploi du temps de révision structuré, de vous accorder des pauses régulières pour reposer votre esprit, d'étudier dans un environnement calme et sans distractions, de pratiquer des exercices et des questions d'entraînement, et de bien vous hydrater et vous reposer. Bonne chance pour vos études!

Pour bien réussir votre examen final, je vous recommande de créer un planning d'étude détaillé, de réviser régulièrement, de pratiquer des exercices, de bien dormir et de manger sainement. Assurez-vous également de prendre des pauses régulières pour ne pas vous surmener. Bonne chance pour votre examen!

24

22

23

Faites un calendrier d'étude, en divisant le contenu en parties gérables chaque jour. Concentrez-vous sur la compréhension, pas sur la mémorisation. Prenez des pauses de 5 minutes toutes les 25 minutes. Dormez suffisamment, mangez sainement et faites de l'exercice pour garder votre cerveau actif. Révisez la veille de l'examen pour raffermir vos connaissances. Bonne chance! Pour être prêt pour votre examen final, je vous recommande de créer un plan d'étude structuré et de le suivre chaque jour. Accordez-vous des pauses régulières pour reposer votre cerveau. Révisez activement en faisant des fiches, des exercices pratiques et en enseignant le matériel à quelqu'un d'autre. Assurez-vous également de bien dormir et de manger sainement pour maintenir votre énergie. Bonne chance pour votre examen!

Simple: Find unique words/phrases in each response, and highlight it.

Evaluating Large Output Spaces

Problem-Finding | Path Finding | Evaluation

Beyond System Outputs

Evaluation Case Study

Exact or literal match is very restrictive. Can we do something more flexible?

That's why they introduced "Positional Diction Clustering".

Problem-Finding Path Finding Evaluation			
Evaluating Large Output Spaces	Beyond System Outputs	Evaluation Case Study	

Feature: Positional Diction Clustering – Interleaved View

S	et display type:	Color responses by:		Legend:		
	Table Groupings			GPT4	GPT3.5	
		model	×			
	Subject: Request for Letter of Recommen	ndation for Software Engineering Inte	ernship			
	Subject: Request for Letter of Recommen	ndation				
	Subject: Request for Letter of Recommen	ndation				
	Dear Professor Sandy,					
	Dear Professor Sandy,					
	Dear Professor Sandy,					
	Dear Professor Sandy,					
	Dear Professor Sandy,					
	Dear Professor Sandy,					
	Dear Prof. Sandy,					
	Dear Prof. Sandy,					
	Dear Prof. Sandy,					
	Dear Prof. Sandy,					
	Dear Prof. Sandy,					
	Hi Prof. Sandy,					
	I hope this email finds you well.					
	I hope this message finds you well.					
	I hope this message finds you well.					
-	As a successful student of your Introduc	tion to Algorithms course. Ladmired	VOUR AVD	part teaching		
	I had the privilege of taking your introduc	ctory algorithms course last semester	r where	Learned an A ora	ade	
	I had the privilege of taking your introduct	Algorithms course last fall, where I e	arned an	n A grade.		
	Last fall. I completed your introduction to	Algorithms course with an A grade		9.000		
	I was a student in your Algorithms class I	last fall, which I greatly enjoyed and n	managed	d an A grade.		
	was a diligent student in your Introducti	ion to Algorithms course last semeste	er, in whi	ich I was able to	achieve an A grade.	
	excelled in your challenging intro to algo	orithms class last fall, achieving an A	grade.		•	
	I excelled in your challenging intro to alg	orithms class last fall, securing an A g	grade.			
	I excelled in your intro to algorithms class	s last fall, earning an A. Your teaching	g was ex	cellent, making a	a challenging class enjoyable.	
	I excelled in your intro to algorithms class	s last fall, earning an A. I found the co	ontent cl	hallenging but en	ngaging, thanks to your great teaching.	
	fondly recall the valuable experiences fr	rom your Intro to Algorithms class in t	the prev	vious fall which I s	successfully concluded with an A grade.	

Simple: PDC with single view of the entire meso-collection.

	Problem-Finding Path Finding Evaluation	
Evaluating Large Output Spaces	Beyond System Outputs	Evaluation Case Study

Feature: Positional Diction Clustering – Interleaved View

Set display type:	Color responses by: Legend:					
Table Groupings	CDTA CDT2 5					
	model ×					
Subject: Request for Letter	of Recommendation for Software Engineering Internship					
Subject: Request for Letter	of Recommendation					
Subject: Request for Letter	of Recommendation					
Dear Professor Sandy.						
Dear Professor Sandy						
Dear Professor Sandy						
Dear Professor Sandy						
Dear Professor Sandy						
Dear Professor Sandy						
Dear Prof. Sandy.	Dear Prof. Sandy					
Dear Prof. Sandy						
Dear Prof. Sandy,	Dear Prof. Sandy.					
Dear Prof. Sandy,						
Dear Prof. Sandy,						
Hi Prof. Sandy,						
I hope this email finds you w	rell.					
I hope this message finds yo	su well.					
I hope this message finds yo	su well.					
As a successful student of y	your Introduction to Algorithms course. Ladmired your expert teaching					
I had the privilege of taking	our introductory algorithms course last samester where Learned an A grade					
I had the privilege of taking	your intro to Algorithms course last fall, where I earned an A grade.					
Last fall, I completed your in	incolucion to Algorithms course with an A grade					
I was a student in your Algo	rithms class last fall, which I greatly enjoyed and managed an A grade.					
I was a diligent student in vo	our Introduction to Algorithms course last semester. In which I was able to achieve an A grade.					
excelled in your challengin	g intro to algorithms class last fall, achieving an A grade.					
I excelled in your challengin	g intro to algorithms class last fall, securing an A grade.					
I excelled in your intro to ald	orithms class last fall, earning an A. Your teaching was excellent, making a challenging class enjoyable.					
I excelled in your intro to alg	porithms class last fall, earning an A. I found the content challenging but engaging, thanks to your great teaching,					
fondly recall the valuable e	whereas from your later to Algorithms class in the previous fall which I successfully concluded with an A grade					

Pilot study with users:

Interleaved View was the most popular.

"Tasks previously considered too difficult to attempt are now tractable".

Check it out:

http://language-play.com/mesotext

Simple: PDC with single view of the entire meso-collection.

Evaluating Large Output Spaces	Beyond System Outputs	Evaluation Case Study

Two Possible Routes

1.

We make interfaces to make large output-space evaluation more efficient.

2. We evaluate systems as they get used, rather than their outputs.

An Intro to Human-Centered NLP

PART 2a

PART 2b

Beyond System Outputs

Evaluation Case Study

What should I consider when building the system that uses my NLP method?

A deep-dive into a large-scale evaluation with experts for creative writing.

Evaluating Large Output Spaces

Beyond System Outputs

Evaluation Case Study

Writing stage (e.g., planning, drafting, revision) Writing context (e.g., academic, journalistic, technical) Purpose (e.g., expository, narrative, descriptive) Specificity (e.g., general direction, detailed requirements) Task Audience (e.g., specified, implied)

Demographic profile (e.g., age, language & culture) User capabilities (e.g., writing expertise, efficiency) Relationship to system (e.g., agency, ownership, trust) System output preferences (e.g., coherence, diversity)

Data - Source (e.g., experts, users) Data - Size (e.g., small, medium, large) Model - Type (e.g., rule-based, foundation model) Model - External resource access (e.g., tool, data) Technology Learning - Problem (e.g., classification, generation) Learning - Algorithm (e.g., supervised, unsupervised) Learning - Training and adaptation (e.g., fine-tuning, prompting) Evaluation - Evaluator (e.g., automatic, machine-learned) Evaluation - Focus (e.g., linguistic quality, controllability) Scalability (e.g., cost, latency)

UI - Interaction metaphor (e.g., agent, tool, hybrid) UI - Layout (e.g., writing area, separated, input UI) UI - Interface paradigm (e.g., text editor, chatbot) UI - Visual differentiation (e.g., formatting, location) UI - Initiation (e.g., user-initiated, system-initiated)

Interaction

User - Steering the system (e.g., explicit, implicit, no control)

User - Integrating system output (e.g., selection, inspiration)

System - Output type (e.g., analysis, generation) System - Curation type (e.g., deterministic, curated options) System - User data access (e.g., input text, additional data)

Ecosystem

Digital infrastructure (e.g., usability consistency, technical interoperability) Social factors (e.g., designing with stakeholders, designing for social writing) Locale (e.g., local writing, remote writing) Access model (e.g., free and/or open-source software, commercial software) Norms & Rules (e.g., laws, conventions)

Change over time (e.g., authors, readers, writing, information environment)

Technology is only one aspect to consider when building a System.

Important to also consider what the **Task** is. who the User is. what the **Interaction** is. and how the **Ecosystem** works.

See this great paper surveying 115 papers in the space!

A Design Space for Intelligent and Interactive Writing Assistants, Lee et al. - CHI 2024

Task: What is the user trying to accomplish?

Example: consider the <u>Writing Stage</u> of the user.

What stage of writing does the system support?

(1) Idea Generation, (2) Planning, (3) Drafting, or (4) Revision?

	Problem-Finding Path Finding Evaluation	
Evaluating Large Output Spaces	Bevond System Outputs	Evaluation Case Study

Task: What is the user trying to accomplish?

Example: consider the <u>Writing Stage</u> of the user.

What stage of writing does the system support?

(1) Idea Generation, (2) Planning, (3) Drafting, or (4) Revision?

(see the paper for other task considerations: Writing Context, Purpose, Specificity, and Audience)

	Problem-Finding Path Finding Evaluation	
Evaluating Large Output Spaces	Bevond System Outputs	Evaluation Case Study

Example: What are the target User Capabilities?

An international Wikipedia Editor might need help with American English rules.

Example: What are the target User Capabilities?

A 6th Grade Student might need help spotting grammar & spelling issues.

	Problem-Finding Path Finding Evaluation	
Evaluating Large Output Spaces	Bevond System Outputs	Evaluation Case Study

Example: What are the target User Capabilities?

A Ph.D. Student might need help making sure technical terminology is accurate.

Example: What are the target User Capabilities?

A professional

writer

might not want the system to make changes affecting their style

	Problem-Finding Path Finding Evaluation	
Evaluating Large Output Spaces	Bevond System Outputs	Evaluation Case Study

Example: What are the target User Capabilities?

The user's capabilities and needs should be considered during system design!

Interaction: How do User, User Interface, and System interact?

Example: How is the system output triggered? (Initiation)

User-Initiated Reactive

System-Initiated Proactive

(see the paper for other interaction considerations: Interface Paradigm, Visual Differentiation, Steering, Integration)

Interaction: How do User, User Interface, and System interact?

Example: How is the system output triggered? (Initiation)

User-Initiated Reactive

More natural for Idea Generation & Planning (ask for what you want)

System-Initiated Proactive

More natural for Revision, Grammar, Typos (continuous scan & fix)

(see the paper for other interaction considerations: Interface Paradigm, Visual Differentiation, Steering, Integration)

Ecosystem: Does the system fit in the overall ecosystem?

Example: What compatibility issues does the system consider?

Usability Consistency

Does the system align with other systems in terms of usability?

Technical Operability

With external services (APIs, tangible world, etc.)

(see the paper for other interaction considerations: Access Model, Social Factors, Locale, Norms, Change over Time)

Task, User, Interaction, Ecosystem

...

What if I just want to evaluate my NLP models?

<u>Good news:</u> You do not need to "check all the boxes".

But using these can improve the evaluation process.

Problem-Finding | Path Finding | Evaluation Beyond System Outputs

Evaluation Case Study

An Intro to Human-Centered NLP

PART 2a

PART 2b

Beyond the system output

Evaluation Case Study

What should I consider when building the system that uses my NLP method?

A deep-dive into a large-scale evaluation with experts for creative writing. Beyond System Outputs

Evaluation Case Study

Evaluating Fiction Writing

<u>RQ:</u> Can top LLMs (in Summer 2023) write short fiction (1500-2500 word) that matches the quality of New Yorker stories (the gold standard of short fiction writing for English)?

NEW YORKER	Subscribe
FLASH FICTION THE KINGDOM THAT FAILED DY HARUKI MURAKAMI August 13, 2020	
55	
511	

Beyond System Outputs

Evaluation Case Study

Evaluating Fiction Writing

<u>RQ:</u> Can top LLMs (in Summer 2023) write short fiction (1500-2500 word) that matches the quality of New Yorker stories (the gold standard of short fiction writing for English)?

What protocol (automatic or through human annotation) do we need to find out?

Pairwise preference is quite noisy for long sequences...

Evaluating Large Output Spaces

Problem-Finding | Path Finding | Evaluation

Beyond System Outputs

Evaluation Case Study

Evaluating Fiction Writing

We can work with professional writers who have published fiction themselves.

Problem-Finding | Path Finding | Evaluation

Beyond System Outputs

Evaluation Case Study

Evaluating Fiction Writing

- We can work with professional writers who have published fiction themselves...
 - OK... but they don't know about AI, and some might be anti-AI...

Evaluation Case Study

Evaluating Fiction Writing

We can work with professional writers who have published fiction themselves...

OK... but they don't know about AI, and some might be anti-AI...

Remember a few slides ago... we have to think of our users and what types of tasks they do.

Beyond System Outputs

Evaluation Case Study

Evaluating Fiction Writing

We can work with professional writers who have published fiction themselves...

OK... but they don't know about AI, and some might be anti-AI...

Remember a few slides ago... we have to think of our users and what types of tasks they do.

What if we ask professionals who teach creative writing how they grade creative writing, say the essays of their students.

Problem-Finding | Path Finding | Evaluation

Beyond System Outputs

Evaluation Case Study

14 Torrance Test of Creative Writing

We interviewed 8 professional writers about how they judge / grade fiction writing.

We then organized the free-form responses into four dimensions, and 14 binary tests (Yes/No).

Dimension	TTCW Name
Fluency	Narrative Pacing
	Understandability and Coherence
	Language Proficiency
	Narrative Ending
	Scene vs. Summary
Flexibility	Structural Flexibility
	Perspective & Voice Flexibility
	Emotional Flexibility
Originality	Originality in Theme/Content
	Originality in Thought
	Originality in Form
Elaboration	World Building & Setting
	Rhetorical Complexity
	Character Development
Problem-Finding | Path Finding | Evaluation

Beyond System Outputs

Evaluation Case Study

14 Torrance Test of Creative Writing

We interviewed 8 professional writers about how they judge / grade fiction writing.

We then organized the free-form responses into four dimensions, and 14 binary tests (Yes/No).

TTCW14: Does each character in the story feel developed at the appropriate complexity level, ensuring that no character feels like they are present simply to satisfy a plot requirement? (Yes/No)

Dimension	TTCW Name
	Narrative Pacing
	Understandability and Coherence
Fluency	Language Proficiency
	Narrative Ending
	Scene vs. Summary
	Structural Flexibility
Flexibility	Perspective & Voice Flexibility
	Emotional Flexibility
	Originality in Theme/Content
Originality	Originality in Thought
	Originality in Form
	World Building & Setting
Elaboration	Rhetorical Complexity
•	Character Development

Beyond System Outputs

Evaluation Case Study

14 Torrance Test of Creative Writing

We interviewed 8 professional writers about how they judge / grade fiction writing.

We then organized the free-form responses into four dimensions, and 14 binary tests (Yes/No).

Are these tests any good?

TTCW14: Does each character in the story feel developed at the appropriate complexity level, ensuring that no character feels like they are present simply to satisfy a plot requirement? (Yes/No)

Dimension	TTCW Name
	Narrative Pacing
	Understandability and Coherence
Fluency	Language Proficiency
	Narrative Ending
	Scene vs. Summary
	Structural Flexibility
Flexibility	Perspective & Voice Flexibility
	Emotional Flexibility
	Originality in Theme/Content
Originality	Originality in Thought
	Originality in Form
	World Building & Setting
Elaboration	Rhetorical Complexity
•	Character Development

Task: How do we setup a fair evaluation?

Example: consider the <u>Writing Stage</u> of the user.

What stage of writing does the system support?

(1) Idea Generation, (2) Planning, (3) Drafting, or (4) Revision?

We want to focus on these two stages.

Get a real New Yorker Story

Summarize it

Generate stories on the same plot with LLMs

Problem-Finding | Path Finding | Evaluation

Beyond System Outputs

Evaluation Case Study

TTCW passed

(0 -> 14)

 Story 1:
 4
 / 14

 Story 2:
 10 / 14

 Story 3:
 4 / 14

 Story 4:
 2 / 14

Art or Artifice - Setup

Shuffle the Stories

Experts Read Stories Conduct TTCWs

Aggregate Results

Problem-Finding | Path Finding | Evaluation

Beyond System Outputs

Evaluation Case Study

Art or Artifice - Results

Figure 3: Distribution of aggregate TTCW results, in which only the number of tests passed is retained.

Finding #1: Models were very very far off from writing good fiction. (they still are)

Problem-Finding | Path Finding | Evaluation

Beyond System Outputs

Evaluation Case Study

Art or Artifice - Results

Figure 3: Distribution of aggregate TTCW results, in which only the number of tests passed is retained.

Finding #1: Models were very very far off from writing good fiction. (they still are) Finding #2: Some models are better than others, and you can tell with TTCW.

Problem-Finding | Path Finding | Evaluation

Beyond System Outputs

Evaluation Case Study

Art or Artifice - Results

Figure 3: Distribution of aggregate TTCW results, in which only the number of tests passed is retained.

Finding #1: Models were very very far off from writing good fiction. (they still are) Finding #2: Some models are better than others, and you can tell with TTCW. Finding #3: Experts have moderate (0.3-0.4) agreement on individual tests, but strong agreement (\sim 0.7) on the number of tests passed per story...

Problem-Finding | Path Finding | Evaluation

Beyond System Outputs

Evaluation Case Study

LLM as a Judge? (Back to NLP!)

LLMs can't write as well. But can they do the judgement?

Since we collected 2,000+ individual TTCW responses, we can evaluate models on this "benchmark" (Story + TTCW -> Yes/No)

Most models perform at random. Glimmers of hope in Claude3 Opus (at the time).

CO

If you ask an LLM if a story has a good ending, it says yes almost all the time.

	Problem-Finding Path Finding Evaluation	
Evaluating Large Output Spaces	Bevond System Outputs	Evaluation Case Study

Can AI writing be salvaged? Mitigating Idiosyncrasies and Improving Human-AI Alignment in the Writing Process through Edits

Chakrabarty et al. CHI2025

Results from Art or Artifice were quite negative.

RQs:

How do we practically improve AI writing? How do we get expert feedback integrated into the models?

Problem-Finding | Path Finding | Evaluation

Beyond System Outputs

Evaluation Case Study

Copy-editing is a common task

Professional writers often iterate over their own writing...

Or they take on copy-editing jobs where they have to improve others' writing (like for magazines, books, etc.).

Perhaps we can ask them to copy-edit AI writing, and learn from the process?

Evaluation Case Study

Copy-editing – Pilot Study

Recruited 8 professionals with experience in copy-editing.

They edited about 100 paragraphs. For each edit they made, experts were asked them for a free-form rationale.

Organized the rationales into 8 recurring categories.

We call these "idiosyncracies", they're like the bugs of AI writing...

AI Writing Idiosyncrasies

Note on Ecosystem: Make Users do Tasks they Would Naturally

Have experts do copy-editing, and infer the common patterns from their work.

Social Factors

How does the task relate to tasks users do frequently?

Ask the experts directly for the common idiosyncrasies in AI writing.

(see the paper for other interaction considerations: Access Model, Social Factors, Locale, Norms, Change over Time)

Scaling up: the LAMP corpus.

As Sarah stepped off the bus, the scent of pine and damp earth enveloped her. [.....] In the kitchen, she found herself reaching for the cabinet where her mother always kept the coffee, only to stop short. The realization that she was alone here, truly alone, settled over her like a heavy blanket. This time, though, she was alone. Her mother would never come back. She sank into a chair at the old oak table[....]

Legend: Deleted Text, Inserted Text

Example of <u>one</u> edit (out of 8,000+) we collected as part of the LAMP corpus. This one was marked as fixing a "Cliché".

Beyond System Outputs

Evaluation Case Study

Creating the LAMP Corpus

Why did Samantha start to feel worse about the sacrifices she made for her children when reflecting on the many small acts of care and the constant demands placed on her?

Samantha watched the steam rise lazily from her coffee cup, tracing the path of her thoughts back through the years. The small, quiet moments collected dust in the corners of her mind: cutting sandwiches into perfect triangles, late-night fevers, and math homework that stretched long into the evening. Each act, done with love, had begun to feel like grains of sand shifting under her feet, slowly eroding the ground she stood on. It wasn't the big sacrifices—moving for better schools or taking extra shifts—that gnawed at her as much as the constant demands that chipped away at her sense of self. When she saw the woman in the café, reading a book in solitude, she felt a pang that shot through her veneer of contentment. It wasn't jealousy. It was the realization that the scaffolding of care she'd built around her children had also confined her. Her dreams, once vibrant and loud, now whispered from a distance. Samantha loved her children fiercely, but as she stared into her coffee, she couldn't ignore the quiet lament of a life that had learned to fold itself into ever-smaller shapes to fit into everyone else's needs.

Initial Writing Quality Score		Final Writing Quality Score	
Choose	~	Choose	~

Also assign a score x / 10 for the initial and final paragraphs.

Helps judge:

- 1. How did they feel about the initial draft.
- 2. How satisfied are they with their editing.

Problem-Finding | Path Finding | Evaluation

Beyond System Outputs

Evaluation Case Study

LAMP Corpus Statistics

Total of ~1,000 edited paragraphs

~20 experts editing

8,000 edits total ~8 / paragraph Problem-Finding | Path Finding | Evaluation

Beyond System Outputs

Evaluation Case Study

LAMP Corpus Statistics

Problem-Finding | Path Finding | Evaluation
Evaluating Large Output Spaces Beyond System Outputs Evaluation Case Study

Did some LLMs score better than others?

LLMs score almost the same in terms of writing quality!

Also: instructions involving fictional situations are more challenging to LLMs than non-fiction prompts. Makes sense.

Evaluation Case Study

Are there "styles" markedly different?

LLMs use almost identical "styles", with similar proportions of writing flaws.

This is an NLP-crowd after all... we have to try to automate things!

Problem-Finding | Path Finding | Evaluation Beyond System Outputs

Evaluation Case Study

Editing Results

- 1. LLM first drafts are typically pretty bad...
- 2. But LLMs can edit their own writing and make it better...
- 3. But it's not as good as experts doing the editing.

Recap of Takeaways for Creative Evaluation

#1: Consider the meso-scale

...creative tasks have large output spaces.

#2: Consider evaluating live systems

... rather than just model outputs.

#3: Involve Experts in Evaluation they're the gold standard.

#4: ... but in ways that fit their typical work tasks. ... they're not NLP researchers.

Conclusion

Tutorial Overview and Conceptual Framework

Part 1: Problem-Finding

How end-states are defined

- + <u>Emulation</u>: Inferring human actions and states
- + <u>Synthetic Data</u>: Creating states with assumptions about the generative process
- + <u>Reward Learning</u>: Approaches to learn reward models from human data or preference-pairs.

Tutorial Overview and Conceptual Framework

Part 1: Problem-Finding

How end-states are defined

Part 2: Path-Finding

How plans are made and steps/actions are taken

- + <u>Search</u>: Heuristics, Exploration and Workflows
- + <u>Hierarchical Planning</u>: Inferring plans from human writing (e.g. RAKE) and getting models to follow them
- + <u>Constraint-Following</u>: Some great musical performances!

Tutorial Overview and Conceptual Framework

Part 1: Problem-Finding

How end-states are defined

Part 2: Path-Finding

How plans are made and steps/actions are taken

Part 3: Evaluation

How plans are made and steps/actions are taken

- + Evaluating Large Outputs: The "mesoscale"
- + <u>Beyond System Outputs:</u> System Evaluation. Inferring plans from human writing (e.g. RAKE) and getting models to follow them
- + <u>Case Study</u>:

Biggest Open Problems

Understanding human behaviors in creative processes

Humans have the ability to infer behaviors, plans and intentions of others under limited observations. How can models do the same?

Planning Generation

Although we saw many great examples of plan-following, this remains a problem in primarily auto-regressive settings.

Evaluating System Outputs

Understanding/assessing the entire system's functionality requires building a model of the system *and* it's users. Evaluating user-level outputs is not enough.

Demos

Kristina Gligoric

Debarati Das

LawFlow : Collecting and Simulating Lawyer's Thought Process

https://minnesotanlp.github.io/Lawyerbench-website/

Debarati Das¹, Karin De Langis¹, Khanh Chi Le¹, Ritik Parkar¹, Jong Inn Park¹, Brendan Madson², Robin Willis², Daniel Moses², Chad Berryman², Brett McDonnell², Daniel Schwarcz, Dongyeop Kang¹

Legal agreement writing for Small Business Formation

A and I are avid anglers aiming to promote fishing in our area by hosting free educational workshops for children and adults. We plan to form a business to manage gear purchases, raffles, and possible future funding, but want to avoid complex formalities and do not intend to make a profit. What kind of startup docs do we need ?

Iterative Q&A

drafting

Client (wants to start a small business)

Collecting legal workflows from Law students

LawFlow

LawFlow Data Collection Tool

Human Task Plan for agreement drafting

LawFlow

Planning

Business Scenario → Human Workflow (Eg.1)

A and I are avid anglers aiming to promote fishing in our area by hosting free educational workshops for children and adults. We plan to form a business to manage gear purchases, raffles, and possible future funding, but want to avoid complex formalities and do not intend to make a profit. What kind of startup docs do we need ?

Business Scenario \rightarrow Human Workflow (Eg.2)

A and B have created the chemical composition of an organic, temperature-regulating soil themselves. A and B need additional funding to produce an amount that's large enough to be tested on a greater scale & form a viable business.

A and B's friend C has an eye for promising business ideas. She knows the two have a strong work ethic and believes that the soil will be a success if the two can consistently produce enough of it to meet demands of early testers.

C is willing to invest \$2M for a 30% ownership interest, which A and B agree to. If all goes well, the three would like to sell the soil's chemical composition to a biotech company.

Humans plan deeply. LLMS plan widely.

Evaluation

Planning

LawFlow

ing

Path finding

Design Suggestions

Same Task : Multiple Diverse Human Workflows

Path finding

Planning

LawFlow

Allows for modeling underlying reward trade-offs (e.g. completeness vs. brevity, tax vs. liability).

Evaluation

Design Suggestions

LawFlow

Deviation is sign of atypicality at a step level

Process-level evaluation metric

Evaluation is not just about outcome completeness.

Evaluation	LLM Evaluation and Rationale	Legal Expert take on LLM	Law Student Defense for LLM
Question		Evaluation	Evaluation
Are there clauses that might create unnecessary disputes between stakeholders?	Score: 3/5. Reasoning: Several sections might induce disputes, especially around transfer of interests, capital contributions, and the unanimity required for many decisions. The right of first refusal in Section 4.04(a) lacks detail on how the membership interest is valued in conflicts, possibly leading to contention. Potential deadlocks due to unanimity requirements without explicit dispute resolution mechanisms for internal conflicts might also lead to issues	The LLM expresses concern about the unanimity requirements But with a 2 member LLC at the start, it's much less a problem The criticism of the valuation in the right of first refusal is absolutely accurate, a real problem with the agreement. The dispute mechanism resolution suggestion is worth considering. With 2 members who have equal voting power, deadlock is unfortunately a built-in problem	I agree that requiring unanimity in decision making can become a problem if the company grows. But it can be an important mechanism for a small venture like this one, you can't have only two or three members who all disagree. It's a potential for conflict, but it's also an incentive for communication and compromise because you have no option to disregard your fellow members' opinions. "There are no solutions, only trade offs."

LLMS miss domain specific nuance but can also surface issues humans overlook

 LawFlow
 Planning
 Path finding
 Evaluation
 Design Suggestions

 Design Suggestions
 For future Legal Al assistants

IMPACT

Completeness

Efficiency + Clarity

Creativity + Completeness

Yijia Shao

How does this differ from standard planning/reasoning?

Yufei Tian and Nanyun (Violet) Peng, NAACL 2022

Zero-Shot Sonnet Generation with Discourse-Level Planning and Aesthetics Features

The World of Sonnets

- Sonnet: 14-line poem with rigorous meter-and-rhyme constraints.
- Structure: 3 Quatrains + 1 Couplet
- Rhyme Scheme: ABAB CDCD EFEF GG
- **Iambic Pentameter:**

Shall I compare thee to a Summers day? 0

Sonnet 18 by William Shakespeare

Shall I compare thee to a summer's **day**? Thou art more lovely and more **temperate**: Rough winds do shake the darling buds of **May**, And summer's lease hath all too short a **date**;

A

B

A R

С

D

D

E

F

E

G (ł

Sometime too hot the eye of heaven shines, And often is his gold complexion **dimm'd**; And every fair from fair sometime **declines**, By chance or nature's changing course **untrimm'd**; C

But thy eternal summer shall not **fade**, Nor lose possession of that fair thou ow'st; Nor shall death brag thou wander'st in his **shade**, When in eternal lines to time thou grow'st:

So long as men can breathe or eyes can see, So long lives this, and this gives life to **thee**.

Our Design Principle

- We propose *not* to train on poetry corpora.
- We proposed a plan-and-write framework[1], that disentangle content from language and format of sonnets.
- Each individual module is trained on more available data, such as *news and stories*.

[1] Lili Yao, Nanyun Peng, Ralph Weschedel, Kevin Knight, Zhongyan Dong, Rui Yan. "Plan-And-Write: Towards Better Automatic Storytelling" AAAI 19

Overview— A four-step hierarchical framework

[1] Content-planning module

- Trained on news and stories
- Equip the model with general world and linguistic knowledge to construct a coherent text world

[2] Rhyme module

[3] Polishing module

• Two figurative devices: imagery and similes

[4] Decoding module

- Trained on news and stories
- Inference-time controllable decoding algorithm for meter-and-rhyme constrained decoding

1. Content-planning module

Input: Title; Output: Outline (keywords) Trained on largely available corpus, news articles and stories

Equip the model with *general world knowledge* to construct *structurally*

Existing plan-and-write: train on the same domain as target task

Our content planning: disentangle training from decoding step and thus circumvent the shortage of sizable sonnet data

2. Rhyme module

Rhyme Pair Generation:

- Obtain word pronunciation from a dictionary ℝ
- Rhyme Candidate List.
- Including strict and slant rhymes
- Probability of generating rhyme

$$P'(w_R) = \begin{cases} \frac{p(w_R | \text{context})}{\sum_{x \in \mathbb{R}} p(x | \text{context})} & \text{, if } w_R \in \mathbb{R} \\ 0 & \text{, otherwise.} \end{cases}$$

Title: A Retrospect	
a. Content Planning (trained on news and stories)]
Line 1: recall, time, consider Line 2: dark, gaze, stars Line 3: day, <u>bright</u> , [R3] Line 4: fog, <u>white</u> , [R4] Line 13: know, youth, trust Line 14: romantic, <u>love</u> , [R14]	Discourse- level Coherence
b. Rhyme Pairs Generation (the CMU dictionary)	
Rhyme Scheme: ABAB CDCD EFEF GG Line 1: spent, time, consider Line 2: dark, gaze, stars Line 3: day, bright, glitter Line 4: fog, white, Mars	

3. Polishing module

The outline is discourse-level coherent but less vivid.

Imagery

- Data:
 - <symbol, imagery> (e.g. < trophy, victory>) pairs in the ConceptNet dataset
- Training:
 - Finetune COMeT for imagery generation
- Inference:
 - Randomly sample multiple nouns from the outline (excluding the rhyme words)
 - Predict their imagery
 - Only make replacement for the two most

Title: A Retrospect	
a. Content Planning (trained on news and stories)	
Line 1: recall, time, consider Line 2: dark, gaze, stars Line 3: day, <u>bright</u> , [R3] Line 4: fog, <u>white</u> , [R4] 	Discourse- level Coherence
Line 13: know, youth, trust Line 14: romantic, <u>love</u> , [R14]	
b. Rhyme Pairs Generation (the CMU dictionary)	
Rhyme Scheme: ABAB CDCD EFE	EF GG
Line 1: spent, time, consider	
Line 2: dark, gaze, stars	
Line 3: day, bright, glitter	
Line 4: fog, white, Mars	
	_
c. Polishing for Aesthetics	
(Imagery pairs, simile phrases)	Aesthetics
Imagery:	
Line 3: day → sun	
Line 14: love \rightarrow rose	
at 11	

3. Polishing module

<u>Simile</u>

- "adj like the figurative vehicle" (e.g., bright like diamond, sudden like a flash)
- Training: Use our in-house tool [1]
- Inference:
 - Randomly sample multiple adjectives from the outline (excluding the rhyme words)
 - Generate their figurative vehicles
 - Only make replacement for the two most confident generations

[1] Chakrabarty Thuresan Speng N. Generating similes effortlessly like a pro: A style transfer approach for simile generation. EMNLP 2020. • bright like diamond (/x/x)

- shining like diamond (/xx/x)

4. Decoding module

In order to write fluent and poetic languages that meet the meter-and-rhyme constraints ...

[Hokamp and Liu] ACL 2017

- Modified grid beam search:
 - O Meter constraints
 - O Keyword/Phrase constraints
 - O Sampling to boost creativity

Result

Training Data: 4,500 CNN news articles and 16,000 reddit stories *Baselines:* Hafez, Fewshot-GPT3, Prosaic

Our models generate highly descriptive, vivid, and condensed text!

• The imagery and similes clearly represents traits of poems

Automatic Evaluation Result

	Format Checking		Novelty		
	Rhyme	Meter	Syllable	Dist-2	Imagery
Hafez	98.3%	76.8%	95.7%	84.8	0.44
Few-shot GPT3	14.0%	17.6%	30.9%	85.3	0.48
Prosaic	<u>100%</u>	10.1%	19.0%	84.9	0.46
Zest w/o fig (ours)	<u>100%</u>	<u>77.7%</u>	<u>98.6%</u>	<u>86.6</u>	0.49
Zest (ours)	<u>100%</u>	75.6%	86.6	<u>86.6</u>	<u>0.51</u>
Human	94.6%	70.7%	81.8%	87.4	0.52

Automatic evaluation results for rhyme, meter, syllable checking, distinct scores, and imageability. Best machine scores are underlined. Human performance is in boldface.

A Computer Scientists' Meeting -----For NAACL 2022, Zest

-Upon arrival, morning meeting start,
-Attendees telling jokes and people laugh,
-Intense like fire, minds exchanged to heart,
-My peers and colleagues shaking hands with staff.

-Unreal like dreams but it's reality,
-A blessing goddess made the wise and good,
-Machines had flourished with humanity,
-Computers wondered how a creature should.

-Diligence was my terminology,
-As long as several breakthroughs got around,
-Our dream advanced with new technology,
-With best solution we have ever found.

-A meeting moment was a moment's spent, -Scientists outpour research so that they invent.

Yufei Tian, Anjali Narayan-Chen, Shereen Oraby, Alessandra Cervone Gunnar Sigurdsson, Chenyang Tao, Wenbo Zhao, Tagyoung Chung, Jing Huang, and Nanyun (Violet) Peng, ACL 2023

Unsupervised Melody-to-Lyrics Generation

Alexa, help me write a song!

Alexa, I want to write a song for my daddy's birthday. It's his 40th birthday next Wednesday. My dad has orange beards and he likes to play games.

Great! Anything else you want to include?

Oh yeah! Let him know I love hind to the ply for the sourd birthday I hope your birthday is as happy as it can be Sure, one moment... We will celebrate with the games you like to play

> A day of fun and laughter that's carefree Even your **orange beards** would feel delighted

> This song cannot express how much I love you Please remember that I **love** you **to the moon**

How does GPT-4 do on this task?

Compose a song verse for my father's birthday, set to the tune of "Mary Had a Little Lamb."

ዕፊም

Certainly! Here's a birthday song verse set to the tune of "Mary Had a Little Lamb":

(Verse)

Happy birthday to you, dear Dad, You're the best we've ever had, With a heart so kind and a spirit so free, You mean the world to our family.

You always lend a helping hand, In every way, you understand, So here's to you, our love so true, Happy birthday, Dad, we cherish you.

Feel free to adjust the lyrics to better suit your preferences or add more verses if you'd like!

How does GPT-4 do on this task?

Happy Birthday, Dad

Formalizing The Task

Inputs:

- 1. A series of music notes as melody ($M = \{n1, n2, ...\}$)
- 2. The intended title (T) and the keywords (K), which are obtained from human users

Outputs:

Lyrics that **align** with the melody M and the Mary Had a Little Lamb Traditional

An example of melody-aligned lyrics.

Challenges and Previous Works

- 1. Data-Driven, Melody-to-Lyric[1][2][3]
 - Train from scratch.
 - Suffer from lack of paired data.
 - Hard to **model the mapping** between melody and lyrics.
 - No control over the content.

Figure 2: The overall architecture of our SongMASS framework. The red line means unsupervised pre-training on lyricto-lyric or melody-to-melody. The blue dotted line is supervised pre-training on lyric-to-melody or melody-to-lyric.

Melody-conditioned lyrics generation with SeqGANs. Chen et al., *IEEE International Symposium on Multimedia*. 2020.
 SongMASS: Automatic song writing with pre-training and alignment constraint. Sheng et al., *AAAI*. 2021.
 icomposer: An automatic songwriting system for Chinese popular music. Lee et al., *NAACL (Demonstration)*. 2019

Our Approach – An Overview

Design Principle

- Circumvent the lack of melody-lyric paired data
 - Train on lyrics data, plus word phonetics information (pure text)
 - At inference time, compile the given melody into *constraints* to guide lyric generation
 - Use constraints instead of melody-lyrics aligned data to enforce the alignment.

Melody Constraints

• **Constraint 1:** The **segmentation** of music phrase should align with the segmentation of lyric sentences *Mary Had a Little Lamb*

Traditional

• **Constraint 2:** *Music rhythm should align with lyrics meter. Shorter note durations are more likely to be associated with unstressed syllables.*

Compiled Constraints:

Segment 1: [0, 1, 0, 1, 0, 1, 0, 1], Segment 2: [0, 1, 0, 1, 0, 1]

Melody-Constrained Decoding

- Constrained decoding for melody-lyric alignment
 - Retrieve pronunciations from the CMU dictionary
 - E.g. amazing □ ['AH0 M EY1 Z IH0 NG'] □ 0 1 0
 - Check if satisfy the rhythm alignment constraints
 - Hard Constraint ($\alpha = 0$) & Soft Constraint ($0 < \alpha < 1$) & No Constraint ($\alpha = 1$)

 $p'(w_i) = egin{cases} p(w_i), & ext{if } w_i ext{ satisfies rhythm alignment,} \ lpha p(w_i), & ext{otherwise.} \end{cases}$

Example results

Title: Happy birthday, Dad Melody: Mary had a little lamb Genre: classic_rock Happy Birthday, Dad

More songs in demo page: https://sites.google.com/view/lyricsgendemo

Our Model

- 1. The comparison between baselines vs shows incoherent texts reduces singability & intelligibility
- 2. vs shows the efficacy of our plan-and-write with syllable control
- 3. vs & shows the efficacy of rhythm alignment
- 4. Soft rhythm constraint is better than hard rhythm constraint in terms of overall quality.

How to model the search space?

$$\sum_{t=1}^n p(\mathbf{x} \mid s_t, a_t) = 1, \quad ext{where } 0 < p(\mathbf{x} \mid s_t, a_t) < 1 ext{ Unknown next state}$$

.

- <u>Constrained-generation</u>
 - Optimize models to satisfy constraints
 - AFFGEN
 - Yufei's lyrics papers

Incorporate (human) prior knowledge/workflow

- Discourse-level planning
 - Plan-and-write & Aristotelian writing
 - Are LLMs capable of generating human-level narratives
 - Briefly mention DiscoSum and IR4Journalism
- Autonomous exploration? Skill learning?
 - Briefly mention R2D2 and other agent works

Lili Yao*, Nanyun Peng*, Weischedel Ralph, Kevin Knight, Dongyan Zhao, and Rui Yan, AAAI 2019

Plan-And-Write: Towards Better Automatic Storytelling

Story Generation Given Titles Without Storyline Planning Title: gymnastics With Storyline Planning

Story (generated):

I wanted to learn how to draw.

So, I decided to go to the gym.

I went to the local gym.

I got a lot of good grades.

I was very happy.

Storyline (generated): wanted -> decided -> class -> practiced -> well Story (generated): I wanted to be a gymnast. I decided to learn how to do gymnastics. I decided to take a <u>class</u>. I practiced every day.

I was able to do <u>well</u> on the class.

Yao et al. (AAAI 2019). Demo: <u>http://cwc-story.isi.edu/</u>

Plan-and-Write Overview

The *planning* component generates storylines from titles. The *writing* component generates stories from storylines and titles.

Plan-and-Write Hierarchical Generation

The benefits of the storyline

- O Having a big picture.
- O The ability to model "what happens next" rather than "what's the next word".
- O More fun interaction and control.
- The challenges of incorporating the storyline
 - How to get the storyline?
 - O How to use the storyline?

Yao et al. (AAAI 2019). Demo: http://cwc-story.isi.edu/

No Annotation? Extracting Storylines

Title: christmas shopping

Story: <u>Frankie</u> had christmas shopping to do.

She went to the **<u>store</u>**.

Inside, she walked around looking for gifts.

Soon her cart was full.

She paid and took her things home.

Storyline (unsupervised extraction); word Extraction) Faritie -> store -> gifts -> cart -> paid

Incorporating Storylines

At each plan step, we model $P(l_i | t, l_{1:i-1})$ At each write step, we model $P(s_i | t, l_{1:n}, s_{1:i-1})$ The probabilities are computed by standard language models and sequence to sequence with attention models.

At each plan step, we model P(l_i / t, s_{1:i-1}, l_{1:i-1})
At each write step, we model P(s_i / t, s_{1:i-1}, l_{1:i})
The probabilities are computed by some specifically designed fusion-RNN cells.

Generation Results Without Storyline Title: the lost phone With Storyline Planning **Planning** Storyline (generated): phone -> Story (generated): realized house -> was -> looked When i was a kid, my -> found parents took me to the mall. Story (generated): I was looking for my phone. I was looking for a new pair I realized it was in my house. of shoes. I wasn't sure where it was. I found a pair that I really I looked everywhere. I found it in the back yard. liked.

bought them and took

Automatic Evaluation of Repetition

- Inter-story repetition: how much different stories look like each other?
- Intra-story repetition: how much different sentences in a story look like each other?
 96 94
 96
 96
 94

Inter-story repetition rates

Intra-story repetition rates

User Preferences

Aspect	Static vs. Language Model		Dynamic vs. Incremental-Seq2Seq	
	Static	LM	Dyna.	Seq2Seq
Fidelity	38.5%	16.3%	35.8%	12.9%
Coherence	39.4%	32.3%	37.2%	28.6%
Interesting	39.5%	35.7%	43.5%	26.7%
Overall	40.9%	34.2%	42.9%	27.0%

The human study is conducted on Amazon Mechanical Turk (AMT). 233 users were participated in the study.

Seraphina Goldfard-Tarrant, Tuhin Chakrabarty, Raiph Weischedel, Nanyun (Violet) Peng

Content Planning For Neural Story Generation with Aristotelian Rescoring

Setup & Motivation

Prompt: Earth has gained a new season, unlike anything currently known.

Human Written Story:

Giant concrete monoliths peaking as high as mountains across the desert plains. Fire and sand whipping across night and day, day and night. You can't sleep there. Every night, the sound of fire etching away at the walls like some schizophrenic in a jail cell. Getting closer, and closer, and closer.

Waking up in cold sweats. The light from the fire is too bright. Can't

breathe on the tops of the walls. The air is too hot. It'll fry your lungs, Dataset - WritingPrompt: [F, L, D], ACL 2018 scorch your skin, and melt your hair. We found that out the hard way.

We're not scientists. Just slaves. Trapped in concrete cells, lined with lead

301

Setup & Motivation

Prompt: Earth has gained a new season, unlike anything currently known.

Generated (BART) Story*:

I was in my bed, in my own room, in the middle of a forest, when the world stopped. It was the first time in my life that I had felt I had a sense of peace. My family and me, myself, were gone, we had all been taken from us. The only thing our family had left were the three children and my world, but my wife and I were the only survivors. There were we, the three of us. But ourselves, our children were all gone. And the only reason why the and become ourselves..... No longer were you and I to be each other. Now we were just two. All our

Story Structure

<u>Yao et al. (2019) Plan-And-Write</u>, <u>Martin et al. (2017)</u>, <u>Fan et al. (2019)</u>

Plot Structure Representations

<V> opened <A0> ent0 <A1> ent0 eyes <V> looking <A0> to ent0 ent1 <V> found <A0> ent0 <V> clipped <A1> ent1 <V> flopped <A0> ent0 ears <V> was <A0> the hunger <A1> gone <V> clouded <A0> Confusion <A1> ent1 mind <V> tilted <A0> ent0 <A1> ent2 <V> approached <A1> ent0 <A2> a nearby puddle <V> looked <A0> ent0

I opened my eyes. Looking to my razor-sharp claws, I found that they were now neatly clipped. My ears flopped on either side of my head lazily, too soft and formless to hunt properly. Most of all, the hunger was gone. Confusion clouded my mind and I tilted my head instinctively. I approached a nearby puddle and looked in.

Fan et al. (2019)

Storyline	Carrie \rightarrow bike \rightarrow sneak \rightarrow nervous \rightarrow
(Extracted)	leg
Story	Carrie had just learned how to ride a
(Human	bike. She didn't have a bike of her
Written)	own. Carrie would sneak rides on her
	sister's bike. She got <u>nervous</u> on a
	hill and crashed into a wall. The bike
	frame bent and Carrie got a deep gash
	on her leg.

<u>Yao et al. (2019)</u>

Extracted Event(s)		
$\langle male.n.02$ get-		
13.5.1 \emptyset <ne>0\rangle,</ne>		
(ORGANIZATION		
say-37.7-1		
monster. $n.01 \emptyset \rangle$		

Martin et al. (2017)

306

Example Story and Extracted Plot

Prompt: Earth has gained a new season, unlike anything currently known.

Human Written Story: [UNK] by fire and sand whipping across night and day, day and night. [...]

Waking up in cold sweats. The light from the fire is too bright. Can't breathe on the tops of the walls. The air is too hot. It'll *fry your lungs, scorch your skin,* and *melt your hair*. We *found that* out the hard way.

We're not scientists. Just slaves. *Trapped* in concrete cells, *lined with lead* to *keep the radiation out*, to *keep them out* **Extracted Plot**: <A1> ent 1 and sand <V> whipping </s>[...]

</s> </s> <A0> ent 2 <V> fry <A1> your lungs # <A0> ent 2 <V> scorch <A1> your skin # <A0> ent 2 <V> melt <A1> your hair </s> <A0> ent 3 <V> found <A1> that </s> </s> </s> <V> Trapped <A2> lined with lead to # <V> lined <A2> with lead # <V> keep <A1> the radiation <A2> out # <V> keep <A1> them <A2> out...

Plan-And-Write with Pretrained LMs

Plan-And-Write: [Y, P, W, K, Z, Y] AAAI 2019 BART: [L,L,G,G,M,L,S,Z] ACL 2020

Improving Story Plot with Aristotle's Poetics

• The elements of story in order of importance.

- O Event choice and arrangement (*Plot*)
- O Character
- O Relevant content (*Thought*)
- O Diction
- We focus on the planning step

Our Framework

Training Rescorers: Event - Inter Shuffle

Prompt: People gather around a campfire to tell the story of a legend ,who actually sits among them

Positive <A1> ent 0 orange glow <V> stood <A2> ent 6 night </s> <A1> ent 3 <V> emanating <A2> ent 3 </s> <A0> ent 2 <V> felt <A1> the cold <A2> ent 2 their backs # <A0> ent 2 <V> faced <A1> ent 3 </s> <A1> ent 2 eyes <V> stayed <A2> upon the saving light # <A0> ent 4 <V> stared </s>...

Negative <A1> ent 3 <V> emanating <A2> ent 3 </s> <A1> ent 8 <V> grew <A2> quieter , darker </s> <A2> ent 5 some <A1> ent 5 <V> came # <A0> a bearded , old man <V> drawing <A1> ent 11 <A2> close # <A1> ent 13 <V> burn </s> 311 <A0> orange <V> glow # <A1> ent 1 <V> sat # <A1> ent 1 <V> paralyzed </s> ...

Training Rescorers: Event - Intra Shuffle

Prompt: People gather around a campfire to tell the story of a legend ,who actually sits among them

Positive <A0> ent 2 <V> felt <A1> the cold <A2> ent 2 their backs # <A0> ent 2 <V> faced <A1> ent 3 </s> <A1> ent 2 eyes <V> stayed <A2> upon the saving light # <A0> ent 4 <V> stared </s>...

Negative <A0> ent 2 <V> faced <A1> ent 3 # <A0> ent 2 <V> felt <A1> the cold <A2> ent 2 their backs </s> <A0> ent 4 <V> stared # <A1> ent 2 eyes <V> stayed <A2> upon the saving light </s>...

Training Rescorers: Event - Verb Shuffle

Prompt: People gather around a campfire to tell the story of a legend ,who actually sits among them

Positive

<A0> ent 9 <V> roamed <A1> the woods #
<A0> ent 9 <V> consumed <A1> ent 6 of the
night </s> <A0> The wind <V> began <A1>
to blow with cold intention # <A1> The wind
<V> blow # <A0> ent 7 <V> danced # <A1>
ent 7 <V> shimmered # <A1> moonlight
<V> began ...

Negative <A0> ent 9 <V> consumed <A1> the woods # <A0> ent 9 <V> roamed <A1> ent 6 of the night </s> <A0> The wind <V> shimmered <A1> to blow with cold intention # <A1> The wind <V> began # <A0> ent 7 <V> danced # <A1> ent 7 <V> <V> blow # <A1> moonlight <V> began ...313

Performances of the Classifiers

- Three different event shuffle strategies
 - inter-sentence shuffled events
 - intra-sentence shuffled events

· veribeshuffledsevents		XGB	CNN	RoBERTa
Relevance		55.2	56.0	89.3
Entity		64.1	76.0	92.3
Event	Inter-Shuffled	55.4	53.0	96.6
	Intra-Shuffled	58.5	75.0	97.3
	Verb-Shuffled	76.1	75.0	95.8

Test binary classification accuracy of three different models on three aspects of Aristotel's Poetic theory.

Incorporating the Rescorers

Mixture Weight Training & Ranking Accuracy

Rescorer	$ $ RA \uparrow	V:T ↑	$E\uparrow$
All 5	0.43	2.07	7.15
All 4 (-intra)	0.35	1.72	8.78
Inter-event	0.37	1.76	8.87
Intra-event	0.16	2.01	6.58
Verb-event	0.15	1.66	8.89
Entity	0.17	1.68	9.18
Relevance	0.17	1.71	8.89

Table 3: Ranking accuracy (RA) and generated plot metrics i.e Verb:Token ratio (V:T), Entities(E) for rescorer ablations

$$f_{\lambda}(\mathbf{x}, \mathbf{z}) = \sum_{i}^{m} -\log p(z|z < i, \mathbf{x}) + \sum_{j}^{|A|} \lambda_{j} a_{j}(\mathbf{x}, z_{i...m})$$
BART ROBERTA

315

 $a_i(\mathbf{x}, z_{i\dots m}) = p_i(l_{pos} | \mathbf{x}, z_{i\dots m})$

Naïve Plot vs. Aristotelian Plot

Prompt: Earth has gained a new season, unlike anything currently known.

Naïve Plot: <A0> ent 1 <V> see </s> $<A0> we < \lor > know < A1> ent 0 #$ <A0> we ' ve <\/> seen </s> </s> $</s> <\vee>$ said <A0> ent 4 </s> <A0> We've all <V> seen <A1> ent 1 </s> $<A0>I <\vee>$ mean # <A0> ent 2 $<\vee>$ know </s> <A0> You <//> </v> know #<A0> I've- <V> seen # <A0> you <V> seen- # <A0> We <V> see <A1> ent 2 </s > <A0> the first one <V> see # <A1> we $<\vee>$ been <A2> ent 2 of our species </s> </s> <A0> you ' </> 316

Aristotelian Plot: <A1> <A0> ent 0 3 the planet Earth <V> lived <A1> a long and happy life </s> <A0> a species <V> survive <A1> ent 0 's harsh environment </s> <A0> The humans $\langle V \rangle$ survive $\langle s \rangle \langle A \rangle$ the first <V> notice <A1> it </s> <A0> we <V> see <A1> ent 1 </s> </s> <A1> <V> shining </s> </s> <A2> ent 3

Generated Story from Aristotelian Plot

Prompt: Earth has gained a new season, unlike anything currently known.

The Earth is more beautiful than it thought! It's the most beautiful planet. The Earth is more beautiful than it thought! It's the most beautiful planet. The sun was shining bright, and the air was crisp, yet the air itself was cold. Everything was so bright. It was the perfect day for earth to be beautiful. Everyone on the planet Earth had lived a long and happy life, this planet has been home to the human race for thousands of years. The humans were a species that had been able to survive through Earth's harsh environment. the humans could survive in these harsh conditions. But one day Earth had a new life, and we were the first to notice it. In the middle of the night, we could see something, a small, dark cloud. A small, white cloud, it's size was almost invisible. Then that cloud grew. And it grew... The sun, shining bright.. There was no sun. All the light was black and it covered the sky. Every day the sky was a dark blue. No matter the time of day, it never seemed like the perfect time, it was a beautiful day. For a new season to begin. Yet no one could know why. Why did we not have a new cycle?"

Evaluation Setup:

Train Prompts An alien invasion happens during an alien invasion.

You are defending your home world from the alien invasion . The aliens are from Planet Earth . You are not .

Write an alien invasion story as us as the aliens .

Tell the story of how a baby stopped an alien invasion.

You are taken prisoner in an alien invasion

Filter $\sim^2/_3$ of set

A alien invasion somehow managed to cripple the younger generations preventing them from fighting back . Now it is up to $_{318}$ the forgotten , old and infirm to fight back .

Human Evaluation – Likert ratings

Data Selection: We randomly sample 110 prompts from a *filtered version* of the test set. Focus on <u>overall quality</u> and <u>relevance</u>.

represents Relevance, solid bars are median, dots are mean. * denotes systems with significant differences (α <0.05 Wilcoxon signed-rank test).

Human Evaluation – Pairwise Comparisons

Pairwise win rates for the Aristotelian Plot system and two best baselines. The differences are significant ($\alpha < 0.05$) per Wilcoxon signed-rank test.

The limits of demonstrations

- Demonstrations are few
- Demonstrations provide only sparse insights of the search space

Rewards guided Training

AI-Slop to AI-Polish? Aligning Language Models through Edit-Based Writing Rewards and Test-time Computation

Attempts toward